Speaking mathematics

Adam Abrams

Fractions:

- $\frac{1}{2}$ is "one half" or "one over two" (American/British) or "one on two" (Australian).
- $\frac{1}{3}$ is "one third" or "one over three".
- $\frac{2}{3}$ is "two thirds" or "two over three".
- $\frac{1}{4}$ is "one fourth" or "one over four" or "one quarter".
- $\frac{x}{y}$ is "X over Y ".

394 is "three hundred ninety-four" or just "three ninety-four".
0.8 is "zero point eight" or "naught point eight" (Brit.) or just "point eight".
57.94 is "fifty-seven point nine four".
$1 . \overline{3}$ and $1.333 \ldots$ are "one point three repeating".
Operations:

- $a+b$ is "A plus B". This action is adding or addition. The result is a sum.
- $a-b$ is "A minus B". This action is called subtracting or subtraction, and the result is called a difference.
- $a \times b$ and $a \cdot b$ are both "A times B" if a and b are (real or complex) numbers. $a b$ can be said as "A B" but means the same thing.
This action is multiplying or multiplication. The result is a product.
If \vec{a} and \vec{b} are vectors, then $\vec{a} \cdot \vec{b}$ is "A dot B " and $\vec{a} \times \vec{b}$ is "A cross B ".
- $a \div b$ and a / b and $\frac{a}{b}$ are all "A divided by B".

This action is dividing or division, and the result is a quotient.
Powers and exponents:

- x^{2} is "X to the power (of) two" or or "X squared".
- x^{3} is "X to the power (of) three" or "X to the third" or "X cubed".
- x^{4} is " X to the power (of) four" or " X to the fourth".
- x^{5} is " X to the power (of) five" or " X to the fifth".
- x^{n} is " X to the power (of) N " or " X to the Nth " or " X to the N ".
- "Power functions" include x^{2} and x^{10} and $x^{-3.8}$.
- "Exponential functions" include 2^{x} and e^{x}.

Parentheses, etc.

- () are parentheses. [] are brackets. Often, either word can be used for either kind of symbol.
- \{ \} are "curly brackets" or "curly braces".
- (is a "left parenthesis" or "open parenthesis", and) is the "right" or "closed" version. Similarly for [] and \{ \}.

Changing $2(x+y)$ into $2 x+2 y$ is "distributing" (specifically, "distributing the two over the sum"). This is one type of "expanding", which is removing brackets.

Changing $2 x+2 y$ to $2(x+y)$ is "factoring" (specifically, "factoring two out of the sum"). This is one type of "simplifying".

Changing from $\frac{x y}{3 x}$ to $\frac{y}{3}$ is "cancelling out the X " from the numerator and denominator. Changing from $x+y-x$ to y is also "cancelling out the X ".

Roots:

- \sqrt{x} is "square root of X " or just "root X ".
- $\sqrt{2}$ is usually said as "root two", and $\sqrt{3}$ as "root three".
- $\sqrt[3]{x}$ is "cube root of X " or "third root of X ".
- $\sqrt[n]{x}$ is "Nth root of X ".

Logarithms (or logs):

- $\log _{b}(x)$ is "log base B of X " or "log of X base B ".
- $\log (x)$ is " $\log \mathrm{X}$ ".

Depending on context, this might mean $\log _{10}(x)$ or $\log _{e}(x)$ or $\log _{2}(x)$.

- $\ln (x)$ can also be said as just "log X". You can say "L N X" or "natural logarithm of X " if you prefer.

Trigonometry (or trig):

- $\sin (x)$ is "sine of X " or "sine X " (you can also say "sinus", which is Latin).
- $\cos (x)$ is "cosine of X " or "cosine X " or "kohs X ".
- $\tan (x)$ is "tangent of X " or "tan X ".
- $\arccos (x)$ and $\operatorname{acos}(x)$ and $\cos ^{-1}(x)$ all mean exactly the same thing. They are the "inverse-cosine of X".
- $\arctan (x)$ and $\operatorname{atan}(x)$ and $\tan ^{-1}(x)$ all mean exactly the same thing. They are the "inverse-tangent of X".

Functions in general:

- $f(x)$ is " F of X ", sometimes just said " F ".
- $f(g(x))$ is " F of G of X ".
- $f^{-1}(x)$ is "F-inverse of X ", sometimes just said "F-inverse X ".

Complex numbers and Linear Algebra:

- \bar{z} is "Z bar" or "Z conjugate".
- $|z|$ is "magnitude of Z " or "norm of Z " or "absolute value of Z ".
- $\arg (z)$ is "argument of Z ".
- $e^{\theta i}$ is "E to the theta I". Note: "theta" is a Greek letter often used for angles.
- $\operatorname{deg}(f)$ is "degree of F " (here $f(x)$ or $f(z)$ would be a polynomial).
- $[8,5]$ and $\left[\begin{array}{l}8 \\ 5\end{array}\right]$ can both be said as "eight five" or "eight comma five".
- $\left[\begin{array}{cc}3 & 7 \\ -1 & 6\end{array}\right]$ is spoken as "three seven negative-one six".
- $\operatorname{det}(M)$ is "determinant of M " or just "det M ".
- M^{-1} is "M inverse" of "inverse of M".

Analysis / Calculus (those words mean the same thing):

- $\lim _{x \rightarrow a}$ is "limit as X goes to A " or "limit as X approaches A".
- $\lim _{x \rightarrow a^{-}}$and $\lim _{x \nmid a}$ are both "limit as X approaches A from the left".
- $\lim _{x \rightarrow a^{+}}$and $\lim _{x \searrow a}$ are both "limit as X approaches A from the right".
- $f^{\prime}(x)$ is "F-prime of X " or "F-prime X ".
- $\mathrm{d} f / \mathrm{d} x$ or $\frac{\mathrm{d} f}{\mathrm{~d} x}$ is "D F D X" (we don't say over or on).
- $\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{x=a}$ is "D F D X when X equals A" or "D F D X at A".
- $\left.F\right|_{x=a} ^{x=b}$ is "capital-F from X equals A to X equals B" or "capital-F from A to B".
$\bullet \int f \mathrm{~d} x$ " is "integral of F D X" or "indefinite integral of F D X"
or "integral of F " or "indefinite integral of F ".

