List 3

Matrices, systems of linear equations
A matrix is a grid of numbers. The dimensions of a matrix are written in the format " $m \times n$ ", spoken as " m by n ", where m is the number of rows and n is the number of columns (write both numbers; do not multiply them).
43. Give the dimensions of the following matrices:
(a) $\left[\begin{array}{cc}-92 & 8 \\ -78 & -67\end{array}\right] 2 \times 2$
(d) $\left[\begin{array}{ccc}-13 & -63 & -5 \\ 0 & -66 & \frac{1}{2} \\ 31 & \frac{5}{22} & \frac{8}{11}\end{array}\right] 3 \times 3$
(b) $\left[\begin{array}{c}-36 \\ 72 \\ -12\end{array}\right] 3 \times 1$
(e) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] 2 \times 2$
(c) $\left[\begin{array}{ccc}75 & 89 & 50 \\ -5 & -81 & 34\end{array}\right] 2 \times 3$
(f) $\begin{aligned} & {\left[\begin{array}{cccccc}58 & -65 & 40 & 8 & -1 & 26 \\ -74 & 58 & -92 & -4 & -21 & 74\end{array}\right] } \\ & 2 \times 6\end{aligned}$

In order to for the matrix product $M N$ to exist (that is, for it to be possible to do the multiplication $M N$) it must be that the number of columns of M is equal to the number of rows of N.
44. If A is a 2×2 matrix, B is a 3×3 matrix, and C is a 3×2 matrix, which of the following exist?
(a) $A A$ exists (2×2)
(i) $C C$ doesn't exist
(b) $A B$ doesn't exist
(j) $A B C$ doesn't exist
(c) $A C$ doesn't exist
(k) $B C A$ exists (3×2)
(d) $B A$ doesn't exist
(ℓ) $A C A$ doesn't exist
(e) $B B$ exists (3×3)
(m) $A^{\top} C$ doesn't exist
(f) $B C$ exists (3×2)
(n) $A C^{\top}$ exists (2×3)
(g) $C A$ exists (3×2)
(o) $C^{\top} C$ exists (2×2)
(h) $C B$ doesn't exist
(p) $A B^{\top} C A C^{\top}$ doesn't exist
45. (a) Calculate $\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right] \cdot\left[\begin{array}{cc}7 & 24 \\ 3 & -72\end{array}\right]$ Previous file had $\left[\begin{array}{cc}7 & 24 \\ -1 & 96\end{array}\right]$.
(b) Calculate $\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right] \cdot\left[\begin{array}{cc}3 & 6 \\ 62 & -92\end{array}\right] \quad$ Previous file had $\left[\begin{array}{cc}3 & 6 \\ 62 & -68\end{array}\right]$.
(b) Compare your answers to parts (a) and (b). They are not equal.

In general, $M N$ and $N M$ can be different matrices.
The transpose of a matrix M, written M^{\top}, swaps the rows and columns.
For example, $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]^{\top}=\left[\begin{array}{lll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$.
46. Compute the following:
(a) $\left[\begin{array}{ccc}1 & 14 & 8 \\ 6 & -1 & 14 \\ 5 & 11 & -3\end{array}\right]+\left[\begin{array}{ccc}11 & 2 & 10 \\ -2 & 14 & 8 \\ -2 & 3 & -4\end{array}\right]=\left[\begin{array}{ccc}12 & 16 & 18 \\ 4 & 13 & 22 \\ 3 & 14 & -7\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 14 & 8 \\ 6 & -1 & 14 \\ 5 & 11 & -3\end{array}\right]-\left[\begin{array}{ccc}11 & 2 & 10 \\ -2 & 14 & 8 \\ -2 & 3 & -4\end{array}\right]=\left[\begin{array}{ccc}-10 & 12 & -2 \\ 8 & -15 & 6 \\ 7 & 8 & 1\end{array}\right]$
(c) $3\left[\begin{array}{ccc}0 & -4 & 0 \\ -1 & -1 & 3 \\ -2 & 5 & 14\end{array}\right]=\left[\begin{array}{ccc}0 & -12 & 0 \\ -3 & -3 & 9 \\ -6 & 15 & 42\end{array}\right]$
(d) $\frac{1}{6}\left[\begin{array}{ll}9 & 14 \\ 6 & 10\end{array}\right]=\left[\begin{array}{cc}3 / 2 & 7 / 3 \\ 1 & 5 / 3\end{array}\right]$
(e) $\left[\begin{array}{cc}8 & 5 \\ 0 & -5\end{array}\right]\left[\begin{array}{l}1 \\ 5\end{array}\right]=\left[\begin{array}{c}33 \\ -25\end{array}\right]$
(f) $\left[\begin{array}{cc}9 & 8 \\ -2 & 5\end{array}\right]^{\top}\left[\begin{array}{l}2 \\ 6\end{array}\right]=\left[\begin{array}{c}6 \\ 46\end{array}\right]$
(g) $\left[\begin{array}{ccc}-5 & 5 & 7 \\ -2 & -3 & 2 \\ -2 & 1 & 4\end{array}\right]\left[\begin{array}{l}3 \\ 9 \\ 8\end{array}\right]=\left[\begin{array}{c}86 \\ -17 \\ 35\end{array}\right]$
(h) $\left[\begin{array}{ccc}4 & 8 & 0 \\ -3 & 3 & -3 \\ 8 & 5 & -2\end{array}\right]\left[\begin{array}{c}-2 \\ 4 \\ 7\end{array}\right]=\left[\begin{array}{c}24 \\ -3 \\ -10\end{array}\right]$
(i) $\left.\left[\begin{array}{ccc}4 & 8 & 0 \\ -3 & 3 & -3 \\ 8 & 5 & -2\end{array}\right]^{\top}\left[\begin{array}{c}-2 \\ 4 \\ 7\end{array}\right]=\left[\begin{array}{ccc}4 & -3 & 8 \\ 8 & 3 & 5 \\ 0 & -3 & -2\end{array}\right]\left[\begin{array}{c}-2 \\ 4 \\ 7\end{array}\right]=\begin{array}{c}36 \\ 31 \\ -26\end{array}\right]$
47. Compute $\left[\begin{array}{ccc}1 & -\sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & \sqrt{2} & 1\end{array}\right]\left[\begin{array}{c}4 \\ 1 \\ -2\end{array}\right] .=\left[\begin{array}{c}2-\sqrt{2} \\ 6 \sqrt{2} \\ 2+\sqrt{2}\end{array}\right]$
48. Compute the following, if they exist:
(a) $\left[\begin{array}{cc}9 & -4 \\ -5 & -5\end{array}\right]\left[\begin{array}{cc}8 & 1 \\ 0 & -3\end{array}\right]=\left[\begin{array}{cc}72 & 21 \\ -40 & 10\end{array}\right]$
(b) $\left[\begin{array}{ccc}4 & 5 & 22 \\ 8 & -13 & 4\end{array}\right]\left[\begin{array}{cccc}19 & 0 & 35 & 6 \\ 0 & 2 & 2 & 6 \\ 9 & 1 & 19 & -1\end{array}\right]=\left[\begin{array}{cccc}274 & 32 & 568 & 32 \\ 188 & -22 & 330 & -34\end{array}\right]$
(c) $\left[\begin{array}{cccc}19 & 0 & 35 & 6 \\ 0 & 2 & 2 & 6 \\ 9 & 1 & 19 & -1\end{array}\right]\left[\begin{array}{ccc}4 & 5 & 22 \\ 8 & -13 & 4\end{array}\right]$ does not exist
(d) $\left[\begin{array}{ll}3 & 0 \\ 2 & 2\end{array}\right]\left[\begin{array}{ccccc}0 & 2 & -1 & 2 & 7 \\ 3 & -4 & -1 & 1 & 8\end{array}\right]=\left[\begin{array}{ccccc}0 & 6 & -3 & 6 & 21 \\ 6 & -4 & -4 & 6 & 30\end{array}\right]$
(e) $\left[\begin{array}{cc}-2 & -4 \\ 7 & 5\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]\left[\begin{array}{ll}7 & 8 \\ 2 & 8\end{array}\right]=\left[\begin{array}{cc}72 & 48 \\ -36 & -24\end{array}\right]$
(f) $\left[\begin{array}{ccc}-4 & -3 & -5 \\ 24 & 6 & 29\end{array}\right]\left[\begin{array}{ccc}4 & 13 & 0 \\ 2 & -26 & 9\end{array}\right]$ does not exist
(g) $\left[\begin{array}{ccc}-4 & -3 & -5 \\ 24 & 6 & 29\end{array}\right]\left[\begin{array}{ccc}4 & 13 & 0 \\ 2 & -26 & 9\end{array}\right]^{\top}=\left[\begin{array}{ccc}-4 & -3 & -5 \\ 24 & 6 & 29\end{array}\right]\left[\begin{array}{cc}4 & 2 \\ 13 & -26 \\ 0 & 9\end{array}\right]=\left[\begin{array}{cc}-55 & 25 \\ 174 & 153\end{array}\right]$
49. (a) Calculate $\left(\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]\right)^{\top}=\left[\begin{array}{cc}7 & 24 \\ -1 & -96\end{array}\right]^{\top}=\left[\begin{array}{cc}7 & -1 \\ 24 & -96\end{array}\right]$
(b) Calculate $\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]^{\top}\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]^{\top}=\left[\begin{array}{cc}1 & 5 \\ 2 & -8\end{array}\right]\left[\begin{array}{cc}3 & 2 \\ 9 & 12\end{array}\right]=\left[\begin{array}{cc}3 & 62 \\ 6 & -92\end{array}\right]$
(c) Calculate $\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]^{\top}\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]^{\top}=\left[\begin{array}{cc}3 & 2 \\ 9 & 12\end{array}\right]\left[\begin{array}{cc}1 & 5 \\ 2 & -8\end{array}\right]=\left[\begin{array}{cc}7 & -1 \\ 24 & -96\end{array}\right]$
(d) Compare your answers to parts (a) and (b). They are not equal.
(e) Compare your answers to parts (a) and (c). They are equal! In general, $(A B)^{\top}=B^{\top} A^{\top}$.
50. Compute the following:
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}8 & 2 \\ 3 & -3\end{array}\right]=\left[\begin{array}{cc}8 & 2 \\ 3 & -3\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}14 & 21 \\ -11 & 23\end{array}\right]=\left[\begin{array}{cc}14 & 21 \\ -11 & 23\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}99 & \frac{1}{10} \\ -37 & 2\end{array}\right]=\left[\begin{array}{cc}99 & \frac{1}{10} \\ -37 & 2\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}-4 & -2 & 1 \\ 5 & 2 & 5 \\ 7 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}-4 & -2 & 1 \\ 5 & 2 & 5 \\ 7 & 4 & 1\end{array}\right]$
(e) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}15 & 11 & -15 \\ 17 & 10 & -8 \\ 0 & 0 & -13\end{array}\right]=\left[\begin{array}{ccc}15 & 11 & -15 \\ 17 & 10 & -8 \\ 0 & 0 & -13\end{array}\right]$
(f) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]=\left[\begin{array}{ccc}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]$
(g) $\left[\begin{array}{lll}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]$
(h) $\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccccc}-39 & -66 & 84 & 66 & -10 \\ -47 & -5 & 17 & -59 & -3 \\ -94 & -90 & -5 & 86 & 31 \\ 25 & 80 & 0 & 35 & 19 \\ -72 & 40 & 99 & 48 & 57\end{array}\right]=\left[\begin{array}{ccccc}-39 & -66 & 84 & 66 & -10 \\ -47 & -5 & 17 & -59 & -3 \\ -94 & -90 & -5 & 86 & 31 \\ 25 & 80 & 0 & 35 & 19 \\ -72 & 40 & 99 & 48 & 57\end{array}\right]$
51. For each of the points P_{1} through P_{7}, calculate

$$
P_{i}^{\prime}=\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right] P_{i} .
$$

(For example, for $P_{5}^{\prime}=\left[\begin{array}{cc}1 & 1 / 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]$.) Plot the points $P_{1}^{\prime}, \ldots, P_{7}^{\prime}$ on a new grid. Connect $P_{1}{ }^{\prime} \rightarrow P_{2}{ }^{\prime} \rightarrow P_{3}{ }^{\prime} \rightarrow P_{4}{ }^{\prime}$ with line segments, and connect $P_{5}{ }^{\prime} \rightarrow P_{6}{ }^{\prime} \rightarrow P_{7}{ }^{\prime}$.

Congratulations. You can write in italics!

$T\left(P_{1}\right)=(0,0) \quad T\left(P_{2}\right)=(2,4) \quad T\left(P_{3}\right)=(5 / 2,3) \quad T\left(P_{4}\right)=(1,2)$
$T\left(P_{5}\right)=(4,4) \quad T\left(P_{6}\right)=(2,0) \quad T\left(P_{7}\right)=(3 / 2,1)$

52. If $\left[\begin{array}{ll}3 & 5 \\ 5 & 9\end{array}\right] M=\left[\begin{array}{ccc}8 & 25 & 12 \\ 14 & 45 & 22\end{array}\right]$, what are the dimensions of matrix $M ? \boxed{2 \times 3}$
53. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right], C=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], D=\left[\begin{array}{lll}0 & 5 & 2\end{array}\right]$, and $E=\left[\begin{array}{ll}1 & 0 \\ 0 & 2 \\ 3 & 1\end{array}\right]$. Write all the products of two matrices from this list that exist (e.g., $A A$ exists, but $A C$ does not).
There are 9 valid products of this form: $A A, A B, B A, B B, C D, D C, D E, E A, E B$
54. For each of the following equations, either give the dimensions of the matrix M or state that such a matrix does not exist. (You do not have to solve for M.)
(a) $M=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] 2 \times 1$
(b) $M=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$ doesn't exist
(c) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ doesn't exist
(d) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] 3 \times 2$
(e) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] 2 \times 1$
(f) $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right] M\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] 1 \times 3$
(g) $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] M\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ doesn't exist
(h) $\left[\begin{array}{cc}2 & -8 \\ 1 & 5 \\ 0 & -7\end{array}\right]\left[\begin{array}{ccccc}9 & 0 & 0 & 11 & 4 \\ -2 & -8 & 6 & 1 & \frac{1}{2}\end{array}\right]\left[\begin{array}{c}5 \\ -4 \\ 0 \\ 1 \\ -9\end{array}\right]\left[\begin{array}{lll}\frac{2}{7} & 1 & \frac{4}{7}\end{array}\right]=M$

Dimensions $(3 \times 2)(2 \times 5)(5 \times 1)(1 \times 3)$ leads to 3×3.
Earlier versions of Tasks 55 and 56 involved "determinants", which are not part of MAT 1448.
55. Suppose M is a 5×12 matrix. Can there be a matrix N such that both $M N$ and $N M$ exist? If so, can anything be said about the dimensions of N ? N must be 12×5
56. Calculate $\left[\begin{array}{cc}11 & \frac{9}{2} \\ -2 & 21\end{array}\right]^{2}$ and $\left[\begin{array}{cc}-16 & 18 \\ -8 & 24\end{array}\right]^{2}$ and compare the answers. Both are $\left[\begin{array}{cc}122 & 144 \\ -64 & 432\end{array}\right]$. In general there can be many, many solution to $X^{2}=M$.

The $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix is the matrix I (also written I_{n} or $I_{n \times n}$) such that

$$
I M=M I=M
$$

for any $n \times n$ matrix M. It has 1 along the main diagonal and 0 everywhere else.
57. (a) Multiply $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) Multiply $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20\end{array}\right]\left[\begin{array}{ccc}6 & 4 & 9 \\ 0 & -3 & -2 \\ 4 & 6 & -4\end{array}\right]=\left[\begin{array}{ccc}6 & 4 & 9 \\ 0 & -3 & -2 \\ 4 & 6 & -4\end{array}\right]$

The inverse matrix of a matrix M is written M^{-1} (spoken as "M inverse") and it is the unique matrix for which $M^{-1} M=I$ and $M M^{-1}=I$. For a 2×2 matrix,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

For any square matrix, the inverse can be found by carefully applying "row operations" to the "augmented matrix" $[M \mid I]$ until it becomes $\left[I \mid M^{-1}\right]$.
58. Find $\left[\begin{array}{cc}5 & 4 \\ 1 & -2\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{1}{7} & \frac{2}{7} \\ \frac{1}{14} & -\frac{5}{14}\end{array}\right]$ and $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]^{-1}=\left[\begin{array}{ccc}3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20\end{array}\right]$ from Task 57 a .
59. Find the inverses of the following matrices. Compare the answers of parts (e) and (f).
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}=\left[\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & 5 \\ 5 & 9\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{9}{2} & -\frac{5}{2} \\ -\frac{5}{2} & \frac{3}{2}\end{array}\right]$
(c) $\left[\begin{array}{ll}8 & 4 \\ 6 & 3\end{array}\right]^{-1}$ does not exist
(d) $\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{5}{17} & \frac{1}{17} \\ -\frac{2}{17} & \frac{3}{17}\end{array}\right]$
(e) $\left[\begin{array}{ll}3 & b \\ 2 & 5\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{5}{15-2 b} & -\frac{b}{15-2 b} \\ -\frac{2}{15-2 b} & \frac{3}{15-2 b}\end{array}\right]$ if $b \neq \frac{15}{2}$
(f) $\left[\begin{array}{ll}3 & 2 \\ b & 5\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{5}{15-2 b} & -\frac{2}{15-2 b} \\ -\frac{b}{15-2 b} & \frac{3}{15-2 b}\end{array}\right]$ if $b \neq \frac{15}{2}$
(g) $\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 9 \\ 5 & 6 & 8\end{array}\right]^{-1}=\left[\begin{array}{ccc}-\frac{22}{25} & \frac{6}{25} & \frac{7}{25} \\ \frac{29}{25} & -\frac{17}{25} & \frac{1}{25} \\ -\frac{8}{25} & \frac{9}{25} & -\frac{2}{25}\end{array}\right]$
$\boldsymbol{*}(\mathrm{h})\left[\begin{array}{llll}3 & 1 & 3 & 3 \\ 1 & 2 & 4 & 0 \\ 2 & 0 & 2 & 2 \\ 4 & 2 & 1 & 3\end{array}\right]^{-1}=\left[\begin{array}{cccc}-2 & \frac{1}{3} & 2 & \frac{2}{3} \\ 1 & 0 & -\frac{3}{2} & 0 \\ 0 & \frac{1}{6} & \frac{1}{4} & -\frac{1}{6} \\ 2 & -\frac{1}{2} & -\frac{7}{4} & -\frac{1}{2}\end{array}\right]$
60. Find the matrix M from Task 52 .

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 5 & 3
\end{array}\right]
$$

61. Solve the following matrix equations:
(a) $X\left[\begin{array}{cc}-1 & 1 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}-2 & -1 \\ 3 & 4\end{array}\right] . \quad$ So $X I=\left[\begin{array}{cc}-2 & -1 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}-1 & 1 \\ 3 & -4\end{array}\right]^{-1}=\left[\begin{array}{cc}11 & 3 \\ -24 & -7\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right] X\left[\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right] . \quad X=\left[\begin{array}{cc}-1 & 2 \\ 0 & 0\end{array}\right]$
(c) $\left(\left[\begin{array}{cc}0 & 3 \\ 5 & -2\end{array}\right]+4 X\right)^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] . \quad X=\frac{1}{4}\left(B^{-1}-A\right)=\left[\begin{array}{cc}-\frac{1}{2} & -\frac{1}{2} \\ -\frac{7}{8} & \frac{3}{8}\end{array}\right]$
(d) $3\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]=X^{\top}\left[\begin{array}{ll}5 & 7 \\ 6 & 8\end{array}\right] . \quad X=\left[\begin{array}{cc}-30 & 33 \\ 51 / 2 & -57 / 2\end{array}\right]$

Earlier versions of Tasks 62 and parts of Task 63 also involved determinants.
w62. Find a matrix X for which $\left[\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right] X=\left[\begin{array}{ll}10 & 4 \\ 10 & 4\end{array}\right]$. Any matrix $X=\left[\begin{array}{ll}5 & 2 \\ c & d\end{array}\right]$ with any bottom row will work.
63. For each of the following, does an inverse matrix exist?
(a) the 3×3 identity matrix.
(b) a 3×5 matrix where every number in the matrix is 1 .
(c) a 4×4 matrix where every number in the matrix is 1 .
(d) a 4×4 matrix where every number in the matrix is 0 .
(e) a 2×2 matrix with $a_{i j}=i+j$.

Only A and E have an inverse
64. Use inverse matrices to solve these systems:
(a) $2 x-y=3,3 x+y=2$

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \text { leads to }\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
-\frac{3}{5} & \frac{2}{5}
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \\
\text { so } x=1, y=-1
\end{gathered}
$$

(b) $x+2 y=0,2 x-y=5 x=2, y=-1$
(c) $\left\{\begin{array}{r}x+y+z=5 \\ 2 x+2 y+z=3 \\ 3 x+2 y+z=1\end{array}\right.$ x=-2,y=-2,z=7
(d) $\left\{\begin{aligned} x+y+z & =4 \\ 2 x-3 y+5 z & =-5 \\ -x+2 y-z & =2\end{aligned}\right.$
65. Use the Gauss method to solve the systems of linear equations from Task 64.
66. Solve the following systems of equations:
(a) $\left\{\begin{aligned} x+2 y+3 z & =14 \\ 4 x+3 y-z & =7 \\ x-y+z & =2\end{aligned}\right.$
(b) $\left\{\begin{array}{l}3 x+4 y+z+2 t=3 \\ 6 x+8 y+2 z+5 t=7 \\ 9 x+12 y+3 z+10 t=13\end{array}\right.$ $t=1, z=1-3 x-4 y$, where x and y can be anything
(c) $\left\{\begin{array}{l}3 x-5 y+2 z+4 t=2 \\ 7 x-4 y+z+3 t=5 \\ 5 x+7 y-4 z-6 t=3\end{array}\right.$

