List 7

Integrals (definite, indefinite, u-sub., parts)

An **indefinite integral** describes all the anti-derivatives of a function. We write

$$\int f(x) \, dx = F(x) + C,$$

where F(x) is any function for which F'(x) = f(x).

175. Find $\int (6x^5 + 7x^3 - 9) dx$.

176. Find $\int (6u^5 + 7u^3 - 9) \, \mathrm{d}u$.

177. Give each of the following indefinite integrals using basic derivative knowledge:

- (a) $\int x^{372.5} dx$
- (c) $\int e^x dx$
- (e) $\int -\sin(x) dx$ (g) $\int \cos(x) dx$

- (b) $\int \frac{1}{x} dx$ (d) $\int 97^x dx$ (f) $\int \sin(x) dx$ (h) $\int 5t^9 dt$

178. If $u = 6x^2 - 5$, give a formula for du (this formula will have x and dx in it) and a formula for dx (this formula will have x and du in it).

Substitution: $\int f(u(x)) \cdot u'(x) dx = \int f(u) du$

179. (a) Re-write $\int \frac{x}{(6x^2-5)^3} dx$ as $\int ... du$ using the substitution $u=6x^2-5$.

(b) Find $\int \frac{x}{(6x^2-5)^3} dx$. (Your final answer should not have u at all.)

180. (a) Re-write $\int x^3 \sin(x^4) dx$ as $\int \dots du$ using the substitution $u = x^4$.

(b) Find $\int x^3 \sin(x^4) dx$.

181. (a) Re-write $\int x \sin(x^4) dx$ as $\int ... du$ using the substitution $u = x^2$.

 $\not\simeq$ (b) Find $\int x \sin(x^4) dx$.

182. Give $\int \frac{2x^3 - 7x + 3}{5x^4 - 35x^2 + 30x + 125} dx$ using substitution.

183. Find $\int \cot(x) dx$ using substitution. Hint: $\cot(x) = \frac{\cos(x)}{\sin(x)}$.

The notation $g(x)\Big|_{x=a}^{x=b}$ or $g\Big|_a^b$ or $[g(x)]_a^b$ means to do the subtraction g(b)-g(a).

184. Calculate
$$\frac{1}{3}x^3\Big|_{x=1}^{x=2}$$
.

185. Calculate
$$(x^3 + \frac{1}{2}x)\Big|_{x=1}^{x=5} = \left[x^3 + \frac{1}{2}x\right]_{x=1}^{x=5}$$
.

186. Calculate
$$\left. \frac{1-x}{e^x} \right|_{x=0}^{x=1}$$
.

The **definite integral** $\int_a^b f(x) dx$, spoken as "the integral from a to b of f(x) with respect to x", is the (signed) area of the region with x = a on the left, x = b on the right, y = 0 at the bottom, and y = f(x) at the top (but if f(x) < 0 for some x or if b < a then it's possible for the area to be negative).

The **Newton–Leibniz Theorem** (**NL**, also called the "Fundamental Theorem of Calculus" or FTC) says that

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{x=a}^{x=b} = F(b) - F(a),$$

where F(x) is any function for which F'(x) = f(x).

187. Match the shapes (a)-(d) with the integral (I)-(IV) that is most likely to calculate its area.

(a) (b) (c) (d) (II)
$$\int_0^1 \sqrt{x} \, dx$$
 (III)
$$\int_0^1 x \, dx$$
 (III)
$$\int_0^1 x^2 \, dx$$
 (IV)
$$\int_0^1 1 \, dx$$

- 188. Calculate $\int_{1}^{2} x^{2} dx$ using the Newton-Leibniz Theorem.
- 189. Write, in symbols, the integral from zero to six of x^2 with respect to x, then find the value of that definite integral.
- 190. Evaluate (meaning find of the value of) the following definite integrals using common area formulas.

(a)
$$\int_{3}^{9} 2 \, dx$$
 (c) $\int_{0}^{5} x \, dx$ (e) $\int_{0}^{5} 3x \, dx$ (g) $\int_{-4}^{4} \sqrt{16 - x^{2}} \, dx$ (b) $\int_{3}^{9} -2 \, dx$ (d) $\int_{-2}^{4} |x| \, dx$ (f) $\int_{1}^{5} 3x \, dx$ (h) $\int_{0}^{7} \sqrt{49 - x^{2}} \, dx$

191. Evaluate the following definite integrals using the FTC. Your answer for each should be a number.

(a)
$$\int_{-3}^{9} 2 \, dx$$
 (c) $\int_{1}^{12} \frac{1}{x} \, dx$ (e) $\int_{0}^{\pi} \sin(t) \, dt$ (b) $\int_{1}^{5} 3x \, dx$ (d) $\int_{0}^{9} (x^{3} - 9x) \, dx$ (f) $\int_{2}^{8} 3\sqrt{u} \, du$

(g)
$$\int_0^1 (e^x + x^e) dx$$
 (i) $\int_1^3 t dt$

(i)
$$\int_{1}^{3} t \, dt$$

(k)
$$\int_0^5 \cos(x) dx$$

$$(h) \int_{-1}^{1} x^2 \, \mathrm{d}x$$

$$(j) \int_{9}^{9} \sin(x^2) \, \mathrm{d}x$$

192. If
$$\int_{1}^{4} f(x) dx = 12$$
 and $\int_{1}^{6} f(x) dx = 15$, what is the value of $I = \int_{4}^{6} f(x) dx$?

193. If
$$\int_0^1 f(x) dx = 7$$
 and $\int_0^1 g(x) dx = 3$, calculate each of the following or say that there is not enough information to possibly do the calculation.

(a)
$$\int_0^1 (f(x) + g(x)) dx$$
 (c) $\int_0^1 (f(x) \cdot g(x)) dx$ (e) $\int_0^1 (f(x)^5) dx$

(c)
$$\int_{a}^{1} (f(x) \cdot g(x)) dx$$

(e)
$$\int_{0}^{1} (f(x)^{5}) dx$$

(b)
$$\int_0^1 (f(x) - g(x)) dx$$
 (d) $\int_0^1 (5f(x)) dx$

(d)
$$\int_0^1 \left(5f(x)\right) dx$$

194. Which of the following has the same value as
$$\int_{2}^{4} \frac{3x^{2}-2}{\ln(x^{3}-2x+1)} dx$$
?

$$(A) \int_{5}^{57} \frac{1}{\ln(u)} \, \mathrm{d}u$$

$$(B) \int_2^4 \frac{1}{\ln(u)} \, \mathrm{d}u$$

(C)
$$\int_{10}^{46} \frac{1}{\ln(u)} \, \mathrm{d}u$$

(A)
$$\int_{5}^{57} \frac{1}{\ln(u)} du$$
 (B) $\int_{2}^{4} \frac{1}{\ln(u)} du$ (C) $\int_{10}^{46} \frac{1}{\ln(u)} du$ (D) $\int_{1}^{2} \frac{1}{\ln(u)} du$

195. Find the following integrals using substitution:

(a)
$$\int (5-x)^{10} dx$$

(k)
$$\int e^{t^5} t^4 dt$$

(b)
$$\int_{1}^{3} \frac{x}{(6x^2 - 5)^3} \, \mathrm{d}x$$

$$(1) \int \frac{(\ln(x))^2}{5x} \, \mathrm{d}x$$

(c)
$$\int \sqrt{4x+3} \, \mathrm{d}x$$

$$(\mathbf{m}) \int \frac{1}{x \ln(x)} \, \mathrm{d}x$$

(d)
$$\int_{0}^{\sqrt{\pi}} x \sin(x^2) dx$$

(n)
$$\int_0^{\pi/2} \sin(x) \cos(x) dx$$

(e)
$$\int \frac{5}{4x+9} \, \mathrm{d}x$$

(o)
$$\int \sin(1-x)(2-\cos(1-x))^4 dx$$

(f)
$$\int \frac{5x}{4x^2 + 9} dx$$

$$(p) \int (1 - \frac{1}{v}) \cos(v - \ln(v)) dv$$

$$\stackrel{\wedge}{\approx} (g) \int \frac{5}{4x^2 + 9} \, \mathrm{d}x$$

$$(q) \int \frac{t}{\sqrt{1 - 4t^2}} \, \mathrm{d}t$$

(h)
$$\int \frac{\sin(\ln(x))}{x} dx$$

(r)
$$\int_0^{\pi/3} \left(3\sin(\frac{1}{2}x) + 5\cos(x)\right) dx$$

$$\stackrel{\sim}{\approx} (i) \int_0^9 \sqrt{4 - \sqrt{x}} \, dx$$

(s)
$$\int \frac{e^{\tan(x)}}{\cos(x)^2} \, \mathrm{d}x$$

$$(j) \int x^3 \cos(2x^4) \, \mathrm{d}x$$

(t)
$$\int_{1}^{5} \frac{x^2 + 1}{x^3 + 3x} dx$$

196. If
$$\int_{9}^{16} f(x) dx = 1$$
, calculate $\int_{3}^{10} f(x^2) x dx$.

198. If
$$\frac{\mathrm{d}v}{\mathrm{d}x} = \sin(2x)$$
, what is one possibility for v ?

199. Fill in the missing parts of the table:

f =	$\sin(x)$	$\ln(x)$	x^3			
$\mathrm{d}f =$	$\cos(x) dx$			$\sin(2x)\mathrm{d}x$	$x \mathrm{d}x$	$\frac{\mathrm{d}x}{x}$

200. (a) Calculate the definite integral
$$\int_{\pi/4}^{3\pi/4} \frac{\cos x}{(\sin x)^3 + 1} \, \mathrm{d}x.$$

$$\stackrel{\wedge}{\approx} (b)$$
 Find the indefinite integral $\int \frac{\cos x}{(\sin x)^3 + 1} dx$.

Integration by parts for indefinite integrals:

$$\int fg' \, \mathrm{d}x + \int gf' \, \mathrm{d}x = fg.$$

201. Use integration by parts to evaluate
$$\int 4xe^{2x} dx$$
.

202. Use integration by parts to find
$$\int \ln(x) dx$$
. Hint: $f = \ln(x)$ and $g' = 1$.

203. Find the following indefinite integrals using integration by parts:

(a)
$$\int x \sin(x) dx$$

(d)
$$\int x^2 \cos(4x) \, \mathrm{d}x$$

(b)
$$\int x \cos(8x) \, \mathrm{d}x$$

(e)
$$\int (4x+12)e^{x/3} dx$$

(c)
$$\int \frac{\ln(x)}{x^5} \, \mathrm{d}x$$

(f)
$$\int \cos(x)e^{2x} dx$$

For definite integrals,
$$\int_a^b fg' dx + \int_a^b f'g dx = fg \Big|_{x=a}^{x=b}$$
.

204. Calculate the following definite integrals using integration by parts:

(a)
$$\int_0^6 (4x+12)e^{x/3} dx$$

(c)
$$\int_0^1 t \sin(\pi t) dt$$

(b)
$$\int_{1}^{2} x \ln(x) \, \mathrm{d}x$$

(d)
$$\int_0^{\pi} x^4 \cos(4x) \, \mathrm{d}x$$

$$\approx 205$$
. Prove that $\int_1^{\pi} \ln(x) \cos(x) dx = \int_1^{\pi} \frac{-\sin(x)}{x} dx$.

- 206. Find $\int 4x \cos(2-3x) dx$.
- 207. Try each of the following methods to find $\int \sin(x) \cos(x) dx$. (They are all possible.)
 - (a) Substitue $u = \sin(x)$, so $du = \cos(x) dx$ and the integral is $\int u du$.
 - (b) Substitue $u = -\cos(x)$, so $du = \sin(x) dx$, and the integral is $\int -u du$.
 - (c) Substitute $\sin(x)\cos(x) = \frac{1}{2}\sin(2x)$, so the integral is $\frac{1}{2}\int\sin(2x)\,\mathrm{d}x$.
 - (d) Do integration by parts with $u = \sin(x)$ and $dv = \cos(x) dx$.
 - (e) Do integration by parts with $u = \cos(x)$ and $dv = \sin(x) dx$.
 - (f) Compare your answers to parts (a) through (e).
- 208. Find $\int (2-3x)\cos(4x) dx$.

The area between two curves of the form y = f(x) is $\int_{\text{left}}^{\text{right}} (\text{top}(x) - \text{bottom}(x)) dx$.

209. Give the areas of the two shapes below:

- 210. Find the area of the region bounded by $y = e^x$, y x = 5, x = -4, and x = 0?

 (That is, find the area between $y = e^x$ and y = x + 5 with $-4 \le x \le 0$).
- 211. What is the area of the region bounded by the curves $y + x^4 = 20$ and y = 4?

212. Calculate each of the following integrals.

Some* require substitution, some** require parts, and some do not need either.

(a)
$$\int (x^4 + x^{1/2} + 4 + x^{-1}) dx$$

(b)
$$\int \left((x^2)^2 + \sqrt{x} + \frac{\ln(81)}{\ln(3)} + \frac{1}{x} \right) dx$$
 (o) $\int \frac{3t - 12}{\sqrt{t^2 - 8t + 6}} dt$

(c)
$$\int (t + e^t) dt$$

(d)
$$\int (t \cdot e^t) dt$$

(e)
$$\int (t^3 + e^{3t}) dt$$

$$(f) \int (t^3 \cdot e^{3t}) \, \mathrm{d}t$$

$$(g) \int \frac{x}{x^2 + 1} \, \mathrm{d}x$$

$$(h) \int \frac{x}{x^2 - 1} \, \mathrm{d}x$$

$$(i) \int \frac{x^2 - 1}{x} \, \mathrm{d}x$$

$$(j) \int \frac{1}{x^2 - 1} \, \mathrm{d}x$$

$$(k) \int \frac{1}{x^2 + 1} \, \mathrm{d}x$$

$$(\ell) \int \frac{y}{\sqrt{y^2 + 1}} \, \mathrm{d}y$$

$$\stackrel{\wedge}{\approx} (\mathrm{m}) \int \frac{1}{\sqrt{y^2 + 1}} \,\mathrm{d}y$$

(n)
$$\int t \ln(t) dt$$

(o)
$$\int \frac{3t-12}{\sqrt{t^2-8t+6}} \, \mathrm{d}t$$

$$(p) \int \frac{1}{\sqrt{x-1}} \, \mathrm{d}x$$

$$(\mathbf{q}) \int \frac{x}{\sqrt{x-1}} \, \mathrm{d}x$$

(r)
$$\int y^3 dy$$

(s)
$$\int y(y+1)(y-1) \, \mathrm{d}y$$

(t)
$$\int x \sin(2x) dx$$

(u)
$$\int x^3 \sin(2x^4) \, \mathrm{d}x$$

$$(\mathbf{w}) \int \frac{3x}{1+x^4} \, \mathrm{d}x$$

$$(x) \int e^{5x} \cos(e^{5x}) \, \mathrm{d}x$$

(z)
$$\int e^{8\ln(t)} dt$$

^{*} g, h, m, o, p, q, u, w, x. ** d, f, ℓ , n, t, v, y.