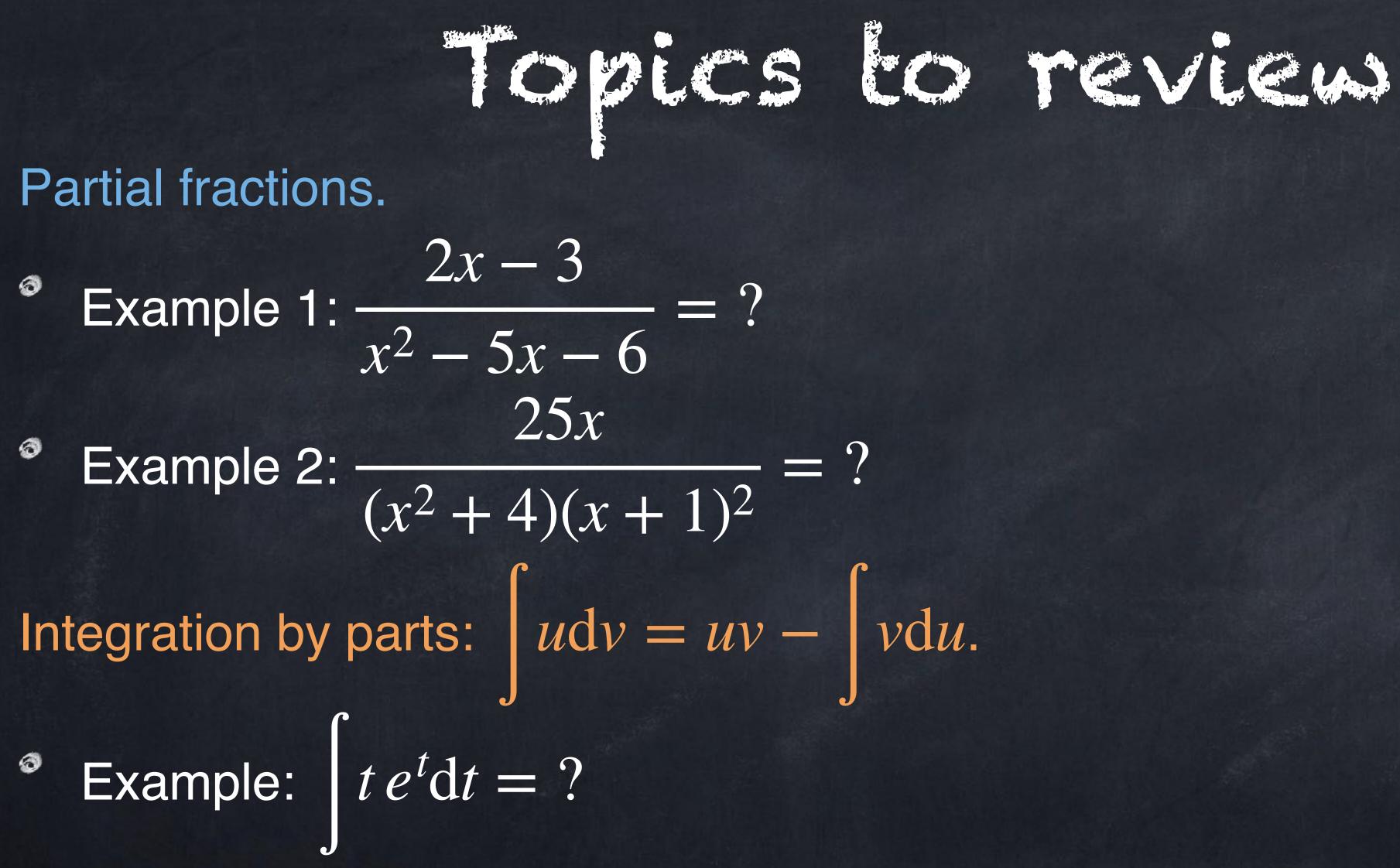
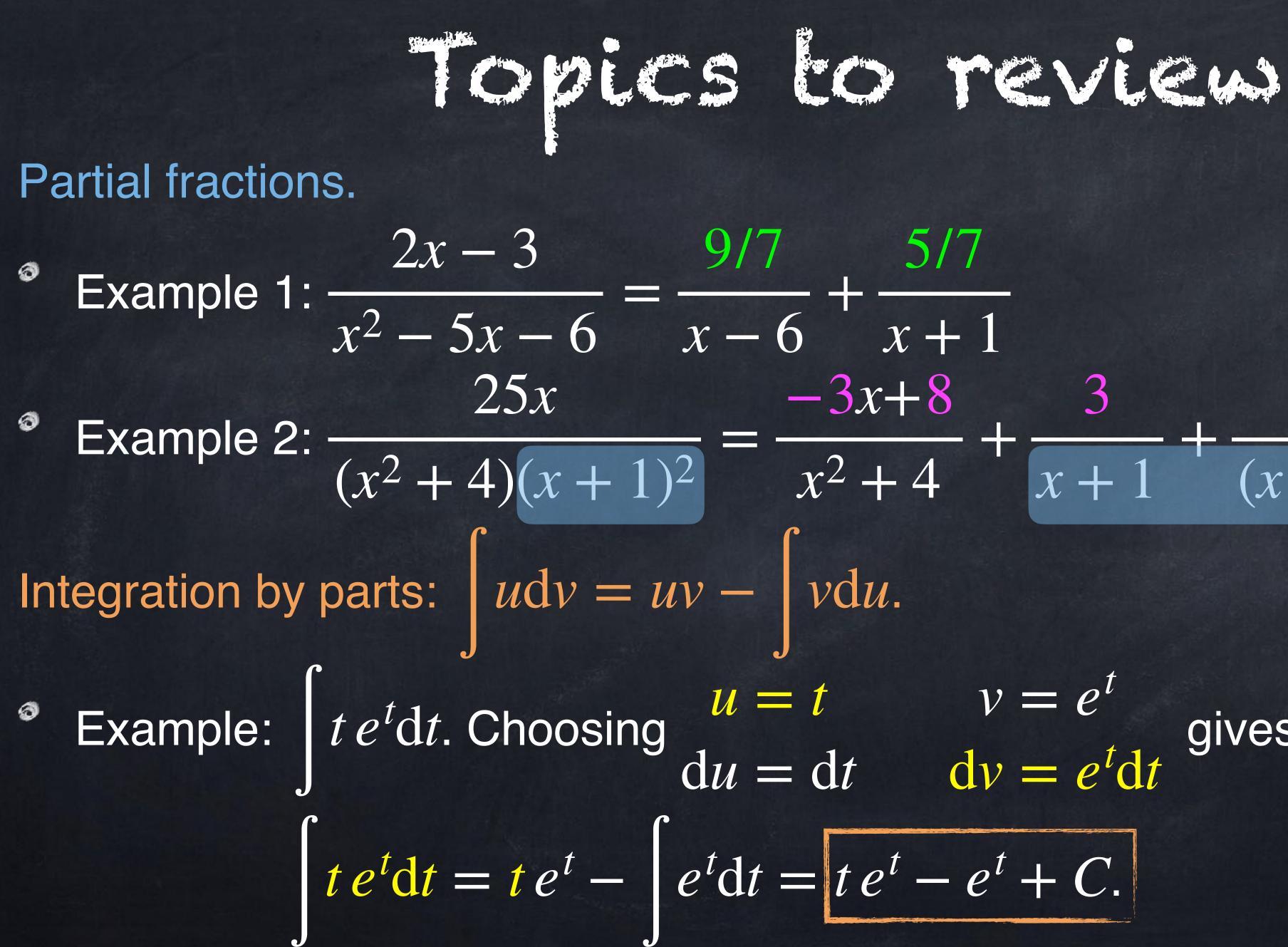
Amalysis 2 Tuesday, 14 May 2024 $2e^{2t}sin(t) + e^{2t}cos(t)$ Warm-up: (a) What is the derivative of $e^{2t} \sin(t)$? (b) What is the derivative of $e^{-t}g(t)$?

 $-e^{-t}g(t) + e^{-t}g'(t)$





$$5/7$$

$$5/7$$

$$5/7$$

$$-3x+8$$

$$3$$

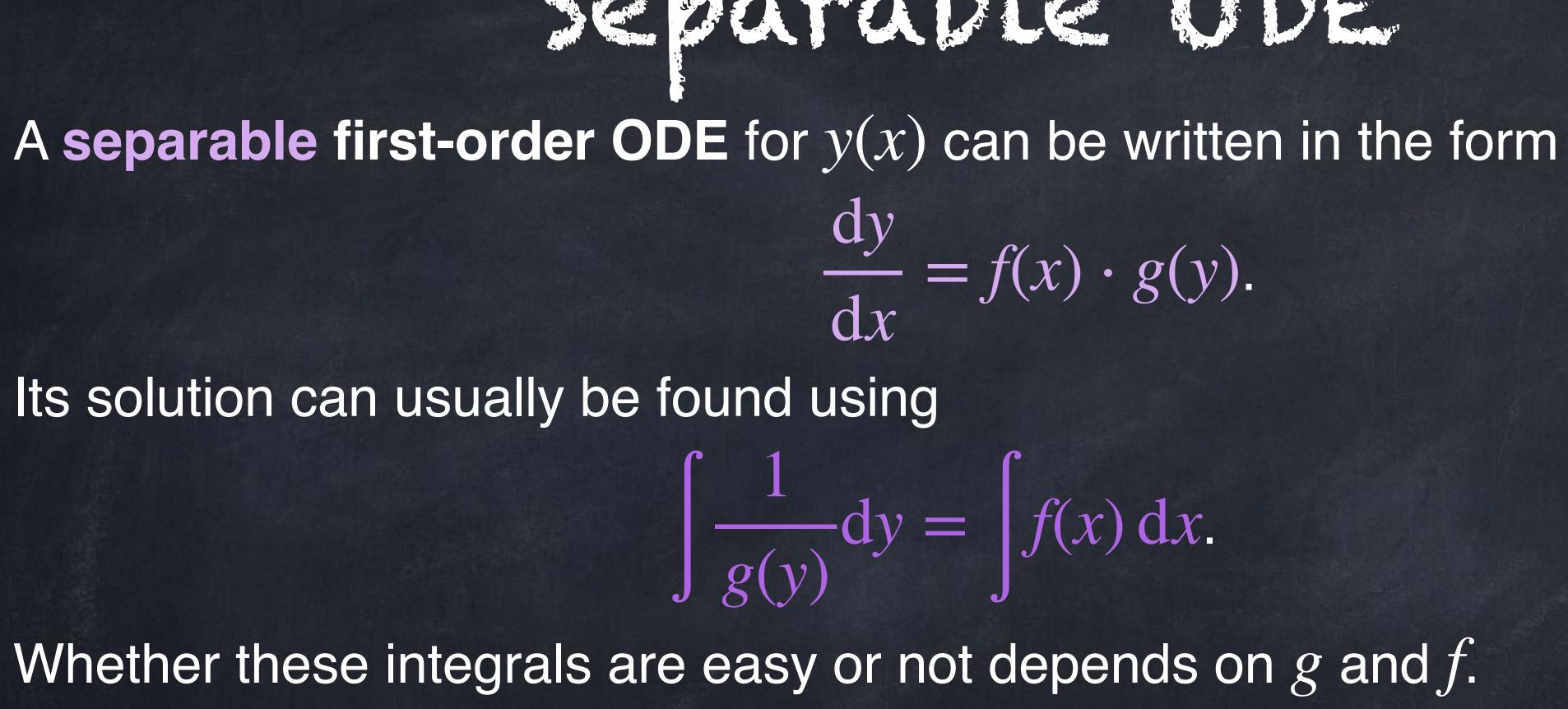
$$-5$$

$$x^{2}+4$$

$$4$$

$$x+1$$

$$(x+1)^{2}$$
When the denomination of the second sec



- Any direct first-order ODE is separable: g(y) = 1 gives y' = f(x).

$$= f(x) \cdot g(y).$$

 $\int \frac{1}{\sigma(y)} dy = \int f(x) dx.$

• Any autonomous first-order ODE is separable: f(x) = 1 gives y' = g(y).

- y' + a(t) y = f(t). y'' + a(t)y' + b(t)y = f(t). y''' + a(t)y'' + b(t)y' + c(t)y = f(t).
- In standard form, a first-order linear ODE for y(t) is In standard form, a second-order linear ODE for y(t) is In standard form, a third-order linear ODE for y(t) is
- We could write y(t), y'(t), etc., instead of just y, y'. 0 Skipping some of the "(t)"s just makes the equation easier to read.
- We can use other letters: x' + a(t)x = b(t) is a linear ODE for x(t). 0

$y' = xy + x^3$ is

y' = P(x) y + Q(x)

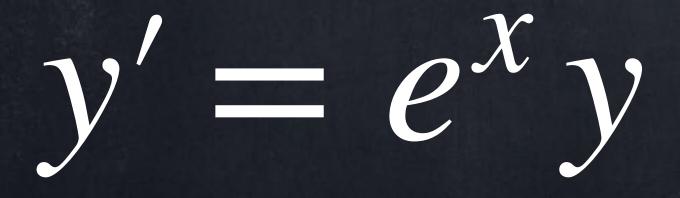
linear

$y' = xe^y + 5$

y' = P(x) y + Q(x)

is

not linear



y' = P(x) y + Q(x)

IS

linear

and

separable

$x' = 3t^2x - 4$

y' = P(x) y + Q(x)

 $\mathbf{x}' = P(\mathbf{b}) \mathbf{x} + Q(\mathbf{b})$

IS

linear

In standard form, a first-order linear ODE for y(t) is

If both a(t) and f(t) are constant functions, then we have 0 y'(t) + a y(t) = b, which is separable (in fact, autonomous), so we can already solve this. A homogeneous first-order linear ODE looks like 0 y'(t) + a(t) y(t) = 0.This is also separable, so we can solve this too. The solution is $y = Ce^{-A(t)}$, where A'(t) = a(t).

y'(t) + a(t) y(t) = f(t).

Monday	Tuesday	Wednesday
13 May	14 May	15
	(today)	Problem Session Quiz 5
20	21 Lecture	22
27	28 Lecture	29
3	4	5
	Lecture	Problem Session Quiz 6 ?

Thursday	Friday	Saturday	Sunday
16	17	18	19
23	24	25	26
30	31	1 June	2
6	7	8	9

- Laplace transforms
- variation of parameters
- integrating factor (next week)
- big formula (next week) 0

The idea of Laplace tr. is to change an IVP into an algebra problem (no analysis needed after that!). We usually use t as the variable in the ODE.

First Creder Linear

There are four tools we can (sometimes) use to solve first-order linear ODEs.

y' + a(t) y = f(t)

The idea of Laplace tr. is to change an IVP into an algebra problem (no analysis needed after that!). We usually use t as the variable in the ODE.

The Laplace transform of a function f(t) is a new function F(s) determined by the definition below. Notice that the variable changed from t to s. People sometimes say that formulas with t are in the "time domain" and formulas with s are in the "frequency domain".

• Definition: $\mathscr{L}[f(t)] = \int_{0}^{\infty} f(t)e^{-st} dt$

In practice, we can just use a table of common Laplace transforms. 0

Time	Frequency	We
eat	$\frac{1}{s-a}$	and
sin(at)	$\frac{a}{s^2 + a^2}$	Canto
$\cos(at)$	$\frac{s}{s^2 + a^2}$	We Lap
tn	<u>n!</u> <u>sn+1</u>	

write, for example,

say "the Laplace transform of e^{2t} is $\frac{1}{s-2}$ ".

 $\mathscr{L}[e^{2t}] = \frac{1}{s-2},$

can also go backwards: "the inverse place transform of $\frac{24}{s^5}$ is t^4 ", written as $\lfloor s^5 \rfloor$

Time	Frequency	The Lap
eat	$\frac{1}{s-a}$	
sin(at)	$\frac{a}{s^2 + a^2}$	C
$\cos(at)$	$\frac{s}{s^2 + a^2}$	Usi
tn	<u>n!</u> <u>sn+1</u>	trar

Laplace transforms

ere are also some important properties of place transforms:

$$\mathscr{U}[f(t) + g(t)] = F(s) + G(s).$$

$$\mathscr{U}[c \cdot f(t)] = c \cdot F(s).$$

ing the second bullet, the inverse Laplace nsform of $\frac{8}{s^5}$ is

$$\mathscr{L}^{-1}\left[\frac{8}{s^5}\right] = \mathscr{L}^{-1}\left[\frac{1}{3} \cdot \frac{24}{s^5}\right] = \frac{1}{3}t^4.$$

Time	Frequency	Th La	
eat	1	0	
	S - a	0	
sin(at)	$\frac{a}{s^2 + a^2}$	Ø	
$\cos(at)$	$\frac{s}{s^2 + a^2}$	0	
tn	<u>n!</u>	0	
<i>L''</i>	<i>Sn</i> +1	Th	is
y'(t)	sY(s) - y(0)	WE) (
			h † <i>a</i>

Laplace transforms

ere are also some important properties of lace transforms:

$$\mathscr{U}[f(t) + g(t)] = F(s) + G(s).$$

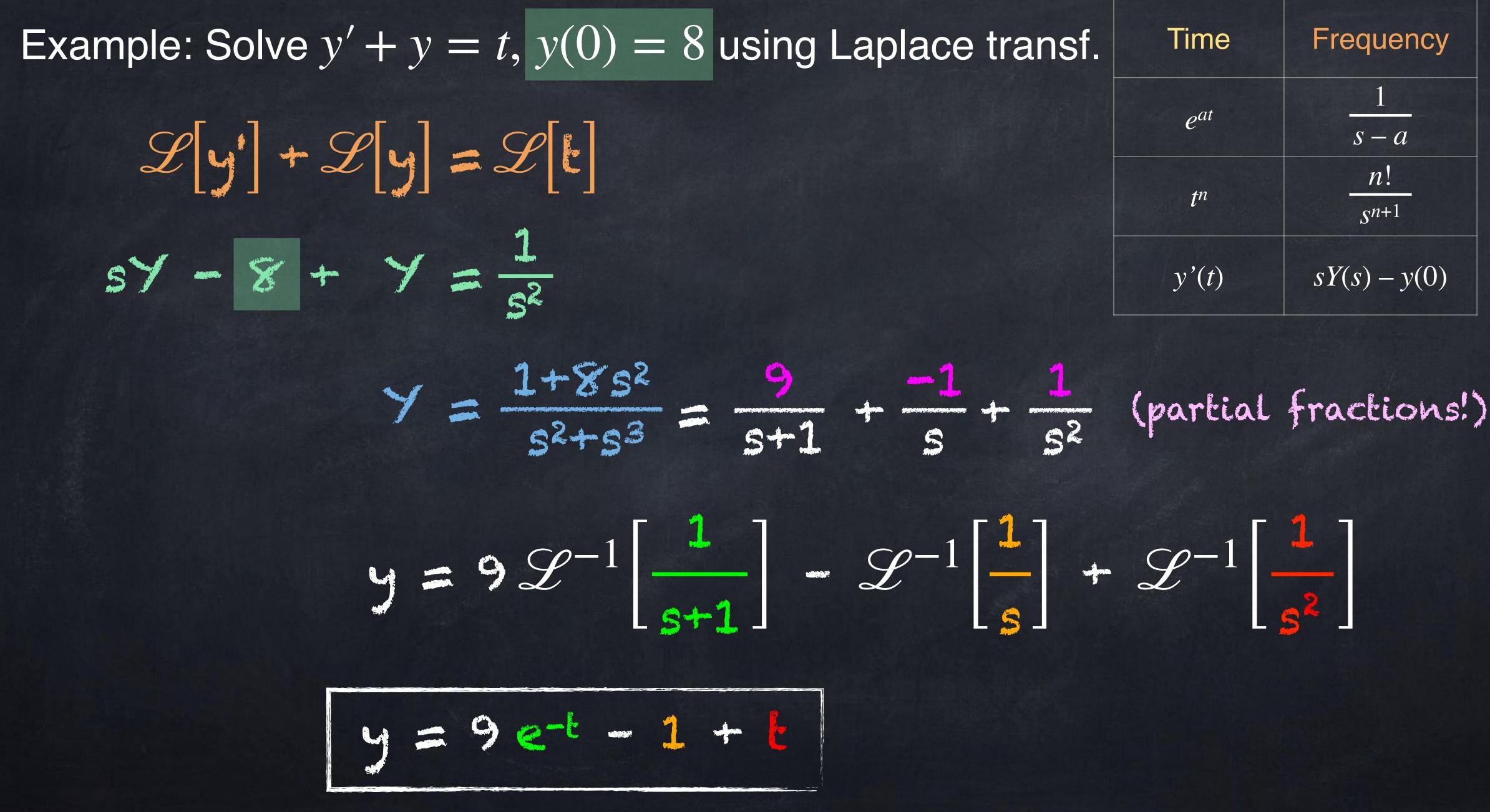
$$\mathscr{U}[c \cdot f(t)] = c \cdot F(s).$$

$$\mathscr{U}[e^{at}f(t)] = F(s - a).$$

$$\mathscr{U}[tf(t)] = -F'(s).$$

$$\mathscr{U}[f'(t)] = s F(s) - f(0).$$
Solve ODEs.

Note: there is no nice formula for $\mathscr{L}[f(t)g(t)]$.



Time	Frequency
e ^{at}	$\frac{1}{s-a}$
t n	$\frac{n!}{s^{n+1}}$
y'(t)	sY(s) - y(0)

There are four tools we can (sometimes) use to solve first-order linear ODEs.

- Laplace transforms 0
- variation of parameters
- integrating factor (next week)
- big formula (next week) 0

The solution to the similar ODE

is just $y = Ce^{-A(t)}$, where A' = a. What if instead of a constant C we used $y = g(t)e^{-A(t)}$ for some g(t)?

First order Linear

y' + a(t) y = f(t)

y' + a(t) y = 0

Example: Solve y' + y = t using variation of parameters. Because y'ty=0 has solution y= C·et, assume that $y(t) = g(t) \cdot e^{-t}$ for some function g. The ODE is y'ty = l, so we need to use

(ge-!) + ge-! = !

Warm-up: (a) What is the derivative of $e^{2t} \sin(t)$?

(b) What is the derivative of $e^{-t}g(t)$?

 $-e^{-t}g(t) + e^{-t}g'(t)$

Example: Solve y' + y = t using variation of parameters. Because y'ty=0 has solution y= C·et, assume that $y(t) = g(t) \cdot e^{-t}$ for some function g. The ODE is y'ty = l, so we need to use $(g \cdot (-e^{-t}) + g' \cdot e^{-t}) + ge^{-t} = t$ from warm-up

۵ 🍓 🖊

۵ 🍓 🗳

q = let - et + C

Finally, $y = 9e^{-t} = (tet - e^{t} + C)e^{-t} = t - 1 + Ce^{-t}$

There are four tools we can (sometimes) use to solve first-order linear ODEs.

- Laplace transforms 0
- variation of parameters 0
- integrating factor (next week) 0
- big formula (next week) 0



y' + a(t) y = f(t)