Analysis 2
 Tuesday, 14 May 2024

$$
2 e^{2 t} \sin (t)+e^{2 t} \cos (t)
$$

Warm-up: (a) What is the derivative of $e^{2 t} \sin (t)$?
(b) What is the derivative of $e^{-t} g(t)$?

$$
-e^{-t} g(t)+e^{-t} g^{\prime}(t)
$$

Topics to review

Partial fractions.

- Example 1: $\frac{2 x-3}{x^{2}-5 x-6}=$?
- Example 2: $\frac{25 x}{\left(x^{2}+4\right)(x+1)^{2}}=$?

Integration by parts: $\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$.

- Example: $\int t e^{t} \mathrm{~d} t=$?

Topics to review

Partial fractions.

- Example 1: $\frac{2 x-3}{x^{2}-5 x-6}=\frac{9 / 7}{x-6}+\frac{5 / 7}{x+1}$
- Example 2: $\frac{25 x}{\left(x^{2}+4\right)(x+1)^{2}}=\frac{-3 x+8}{x^{2}+4}+\frac{3}{x+1}+\frac{-5}{(x+1)^{2}}$ When the

Integration by parts: $\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$.

- Example: $\int t e^{t} \mathrm{~d} t$. Choosing $\begin{array}{rlrl}u & =t & v & =e^{t} \\ \mathrm{~d} u & =\mathrm{d} t & \mathrm{~d} v & =e^{t} \mathrm{~d} t\end{array}$ gives

$$
\int t e^{t} \mathrm{~d} t=t e^{t}-\int e^{t} \mathrm{~d} t=t e^{t}-e^{t}+C
$$ rook, you need separate partial fractions for each power.

Separable ODE

A separable first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) \cdot g(y) .
$$

Its solution can usually be found using

$$
\int \frac{1}{g(y)} \mathrm{d} y=\int f(x) \mathrm{d} x .
$$

Whether these integrals are easy or not depends on g and f.

- Any direct first-order ODE is separable: $g(y)=1$ gives $y^{\prime}=f(x)$.
- Any autonomous first-order ODE is separable: $f(x)=1$ gives $y^{\prime}=g(y)$.

Linear ODE

In standard form, a first-order linear ODE for $y(t)$ is

$$
y^{\prime}+a(t) y=f(t) .
$$

In standard form, a second-order linear ODE for $y(t)$ is

$$
y^{\prime \prime}+a(t) y^{\prime}+b(t) y=f(t) .
$$

In standard form, a third-order linear ODE for $y(t)$ is

$$
y^{\prime \prime \prime}+a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y=f(t) .
$$

- We could write $y(t), y^{\prime}(t)$, etc., instead of just y, y^{\prime}. Skipping some of the " (t) "s just makes the equation easier to read.
- We can use other letters: $x^{\prime}+a(t) x=b(t)$ is a linear ODE for $x(t)$.

A first-order linear ODE for $y(x)$ can be written in the form

$$
y^{\prime}=P(x) y+Q(x)
$$

for some functions $P(x)$ and $Q(x)$.

$$
y^{\prime}=x y+x^{3} \text { is }
$$

linear

A first-order linear ODE for $y(x)$ can be written in the form

$$
y^{\prime}=P(x) y+Q(x)
$$

for some functions $P(x)$ and $Q(x)$.

$$
y^{\prime}=x e^{y}+5 \text { is }
$$

not linear

A first-order linear ODE for $y(x)$ can be written in the form

$$
y^{\prime}=P(x) y+Q(x)
$$

for some functions $P(x)$ and $Q(x)$.

linear

$y^{\prime}=e^{x} y \quad$ is
and
separable

A first-order linear ODE for $y(x)$ can be written in the form

$$
y^{\prime}=P(x) y+Q(x)
$$

for some functions $P(x)$ and $Q(x)$.

$$
x^{\prime}=P(B) x+Q(B)
$$

$x^{\prime}=3 t^{2} x+4$ is

linear

Linear ODE

In standard form, a first-order linear ODE for $y(t)$ is

$$
y^{\prime}(t)+a(t) y(t)=f(t) .
$$

- If both $a(t)$ and $f(t)$ are constant functions, then we have

$$
y^{\prime}(t)+a y(t)=b,
$$

which is separable (in fact, autonomous), so we can already solve this.

- A homogeneous first-order linear ODE looks like

$$
y^{\prime}(t)+a(t) y(t)=0 .
$$

This is also separable, so we can solve this too.

- The solution is $y=C e^{-A(t)}$, where $A^{\prime}(t)=a(t)$.

First-order linear

There are four tools we can (sometimes) use to solve first-order linear ODEs.
Laplace transforms

- variation of parameters
- integrating factor (next week)
- big formula (next week)

$$
y^{\prime}+a(t) y=f(t)
$$

The idea of Laplace tr. is to change an IVP into an algebra problem (no analysis needed after that!). We usually use t as the variable in the ODE.

Laplace Eransforms

The idea of Laplace tr. is to change an IVP into an algebra problem (no analysis needed after that!). We usually use t as the variable in the ODE.

The Laplace transform of a function $f(t)$ is a new function $F(s)$ determined by the definition below. Notice that the variable changed from t to s. People sometimes say that formulas with t are in the "time domain" and formulas with s are in the "frequency domain".

- Definition: $\mathscr{L}[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t$
- In practice, we can just use a table of common Laplace transforms.

Laplace transforms

We write, for example,

$$
\mathscr{L}\left[e^{2 t}\right]=\frac{1}{s-2},
$$

and say "the Laplace transform of $e^{2 t}$ is $\frac{1}{s-2}$ ".

We can also go backwards: "the inverse Laplace transform of $\frac{24}{s^{5}}$ is t^{4}, written as

$$
\mathscr{L}^{-1}\left[\frac{24}{s^{5}}\right]=t^{4} .
$$

Laplace Eransforms

Time	Frequency
$e^{a t}$	$\frac{1}{s-a}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$

There are also some important properties of Laplace transforms:

- $\mathscr{L}[f(t)+g(t)]=F(s)+G(s)$.
- $\mathscr{L}[c \cdot f(t)]=c \cdot F(s)$.

Using the second bullet, the inverse Laplace transform of $\frac{8}{s^{5}}$ is

$$
\mathscr{L}^{-1}\left[\frac{8}{s^{5}}\right]=\mathscr{L}^{-1}\left[\frac{1}{3} \cdot \frac{24}{s^{5}}\right]=\frac{1}{3} t^{4} .
$$

Laplace Eransforms

Time	Frequency
$e^{a t}$	$\frac{1}{s-a}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$
$y^{\prime}(t)$	$s Y(s)-y(0)$

There are also some important properties of Laplace transforms:

- $\mathscr{L}[f(t)+g(t)]=F(s)+G(s)$.
- $\mathscr{L}[c \cdot f(t)]=c \cdot F(s)$.
- $\mathscr{L}\left[e^{a t} f(t)\right]=F(s-a)$.
- $\mathscr{L}[t f(t)]=-F^{\prime}(s)$.
- $\mathscr{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$.

This last one uses both F and f. It is also why we can use \mathscr{L} to solve ODEs!
Note: there is no nice formula for $\mathscr{L}[f(t) g(t)]$.

Example: Solve $y^{\prime}+y=t, y(0)=8$ using Laplace transf.

$$
\begin{aligned}
& \mathscr{L}\left[y^{\prime}\right]+\mathscr{L}[y]=\mathscr{L}[\mathfrak{k}] \\
& s y-8+y=\frac{1}{s^{2}} \\
& y=\frac{1+8 s^{2}}{s^{2}+s^{3}}=\frac{9}{s+1}+\frac{-1}{s}+\frac{1}{s^{2}} \text { (partial fractions!) } \\
& t^{m} \frac{1}{s-a} \\
& s^{n+1} \\
& y=9 \mathscr{L}^{-1}\left[\frac{1}{s+1}\right]-\mathscr{L}^{-1}\left[\frac{1}{s}\right]+\mathscr{L}^{-1}\left[\frac{1}{s^{2}}\right] \\
& y=9 e^{-t}-1+\varepsilon
\end{aligned}
$$

Time	Frequency
$e^{a t}$	$\frac{1}{s-a}$
t^{m}	$\frac{n!}{s^{n+1}}$
$y^{\prime}(t)$	$s Y(s)-y(0)$

First-order linear

There are four tools we can (sometimes) use to solve first-order linear ODEs.

- Laplace transforms
© variation of parameters
- integrating factor (next week)

$$
y^{\prime}+a(t) y=f(t)
$$

- big formula (next week)

The solution to the similar ODE

$$
y^{\prime}+a(t) y=0
$$

is just $y=C e^{-A(t)}$, where $A^{\prime}=a$.
What if instead of a constant C we used $y=g(t) e^{-A(t)}$ for some $g(t)$?

Example: Solve $y^{\prime}+y=t$ using variation of parameters.
Because $y^{\prime}+y=0$ has solution $y=C \cdot e^{-t}$, assume that $y(t)=g(t) \cdot e^{-t}$ for some function g. The ODE is $y^{\prime}+y=t$, so we need to use

$$
\left(g e^{-t}\right)^{\prime}+g e^{-t}=t
$$

Warm-up: (a) What is the derivative of $e^{2 t} \sin (t)$?
(b) What is the derivative of $e^{-t} g(t)$?

$$
-e^{-t} g(t)+e^{-t} g^{\prime}(t)
$$

Example: Solve $y^{\prime}+y=t$ using variation of parameters.
Because $y^{\prime}+y=0$ has solution $y=C \cdot e^{-t}$, assume that $y(l)=g(l) \cdot e^{-t}$ for some function g.

The ODE is $y^{\prime}+y=t$, so we need to use

$$
\begin{gathered}
\left(g \cdot\left(-e^{-t}\right)+g^{\prime} \cdot e^{-t}\right)+g e^{-t}=t \text { from warm-up } \\
\ldots \\
\ldots \\
g=t e^{t}-e^{t}+C
\end{gathered}
$$

Finally, $y=g e^{-t}=\left(t e^{t}-e^{t}+C\right) e^{-t}=t-1+C e^{-t}$

First-order linear

There are four tools we can (sometimes) use to solve first-order linear ODEs.

- Laplace transforms
- variation of parameters
- integrating factor (next week)
- big formula (next week)

$$
y^{\prime}+a(t) y=f(t)
$$

