

Analysis 2 Tuesday, 21 May 2024

Warm-up: Re-write the ODE \int *in the form y'* + <u>*y* = *y* </u> $ty' + t^3y + \sin(t) = 0$

- In standard form, a first-order linear ODE for $y(t)$ is In standard form, a second-order linear ODE for $y(t)$ is
- In standard form, a third-order linear ODE for $y(t)$ is
- We could write $y(t)$, $y'(t)$, etc., instead of just y , y' . \circ
- We can use other letters: $x' + a(t)x = b(t)$ is a linear ODE for $x(t)$. \circledcirc

 $y' + a(t) y = f(t)$. $y'' + a(t)y' + b(t)y = f(t)$. $y'' + a(t)y'' + b(t)y' + c(t)y = f(t).$

Skipping some of the " (t) "s just makes the equation easier to read.

$y' + a(t)y = f(t)$

Assume $y = g(t)e^{-A(t)}$ and plug this into the ODE. Find g' , then g , then y . Example: $y' + y = t$. $a = 1 \rightarrow A = t$, so assume $y = q(t) \cdot e^{-t}$. $g' = te^{t}$ → $g = te^{t} - e^{t} + C$ → $y = t - 1 + Ce^{-t}$

There are four tools we can (sometimes) use to solve first-order linear IVPs.

- ² variation of parameters
- Laplace transforms
- integrating factor
- (coming soon) \circ

…

The solution to $y' + a(t)y = 0$ is always $y = Ce^{-A(t)}$, where $A' = a$.

- variation of parameters
- Laplace transforms
- integrating factor
- (coming soon) \circledcirc

There are four tools we can (sometimes) use to solve first-order linear IVPs.

Laplace transforms change an IVP into an algebra problem (no analysis needed after that!). We use a table of common $f(t) \longleftrightarrow F(s)$.

Example: $y' + y = 0$, $y(0) = 8$ -

y = 9e+ – 1 + t ₹

" *y*′+ *a*(*t*) *y* = *f*(*t*)

$$
\frac{2}{\sqrt{5}} \times (5\sqrt{5}) + \sqrt{5} = \frac{1}{5^{2}}
$$

2
Q-1

$$
\gamma = \frac{9}{5+1} + \frac{-1}{5} + \frac{1}{5^{2}}
$$

When (not) to u

Laplace transforms change, for exan $y' + 12y = \sin($

into

very nicely. But some tasks don't work as well.

- An ODE without an initial condition needs $y(0) = C$, \circ which makes partial fractions much harder.
- Initial condition with $t \neq 0$ will require a trick called "shifting". \circledcirc
- Non-constant coefficients: $\mathscr{L}[a(t)\cdot y(t)]$ is known only for some $a(t)$. $\mathscr{L}[a(t)\cdot y(t)]$ is known only for some $a(t)$

- 25
-

$$
(sY - 3) + 12Y = \frac{5}{s^2 + 1}
$$

$y' + a(t)y = f(t)$

- variation of parameters \circledcirc
- Laplace transforms \bullet
- integrating factor 1
- (coming soon) \circledcirc

There are four tools we can (sometimes) use to solve first-order linear ODEs.

The idea of an **integrating factor** is to multiply the entire ODE by some unknown function to make it nicer. We call this function $M(t)$ —in some books, $\mu(t)$ – and we will see what properties of $M(t)$ will be helpful to change the equation into one we can solve.

Example: Solve $y' + y = t$ using an integrating factor. First step: $M(t) \cdot y'(t) + M(t) \cdot y(t) = M(t) \cdot t$

- variation of parameters \circledcirc
- Laplace transforms \circledcirc
- integrating factor \circ
	- big formula

There are four tools we can (sometimes) use to solve first-order linear ODEs.

where $A'(t) = a(t)$. *^y* ⁼([∫]

y′+ *a*(*t*) *y* = *f*(*t*)

Big formula: The general solution to $y' + a(t)y = f(t)$ is always $e^{A(t)}f(t)dt$ $\int e^{-A(t)}$

Example: Solve $y' + y = t$ using the big formula.

$$
y' + a(t)y = f(t)
$$

$$
y = \left(\int e^{A(t)} f(t) dt\right) e^{-A(t)}
$$

where $A'(t) = a(t)$

 $y' + a(t)y = f(t)$

Big formula: The general solution to $y' + a(t)y = f(t)$ is always $\frac{d}{dx}$ $M(t) f(t) dt$

- variation of parameters
- Laplace transforms \circledcirc
- integrating factor 8
- big formula 8

There are four tools we can (sometimes) use to solve first-order linear ODEs.

Task: Solve $x' + 10x = 5e^{3t}$, $x(0) = 2$. We could use…

All methods except Laplace will first give us the general solution $x = ... + C...$ and then we'll use $x(0) = 2$ to get C.

- Laplace transforms
- integrating factor
- variation of parameters big formula

Task: Solve $x' + 10x = 5e^{3t}$, $x(0) = 2$. We could use… Laplace transforms $(sX - z) + X = \mathscr{L}[s e^{st}],$ solve that for X, then $^{\perp}$ use partial fractions and the table to find $x = \mathscr{L}^{-1}[X].$ integrating factor $M x' + 10 M x = 5 Me^{3t}$ Left side will be $Mx' + M'x = (Mx)'$ if $M' = 10M \rightarrow M = e^{10k}$. variation of parameters x' + 10x = 0 would give $x = Ce^{-10t}$, so assume $x = g(t) e^{-10t}$. ODE is now $(q e^{-10t})' + 10(q e^{-10t}) = 5e^{3t}$. \rightarrow Product Rule! big formula To use this you have to memorize it.

Harder:

- $x' + 10x = 50t^2 + 7$, $x(0) = 2$. This will need integration by parts for non-Laplace methods.
- $x' + 10x = 13 \sin(2t), x(0) = 2.$ \circ numerator) for partial fractions.
- $x'+\frac{1}{t}x=5e^t, x(1)=3.$ $x = 5e^t$, $x(1) = 3$ *t* Needs integration by parts. (Laplace is *very* difficult here.) \circledcirc

Solution: $x = 5t^2 - t + \frac{4}{5} + \frac{6}{5}e^{-10t}$

This will need integration by parts OR a quadratic denominator (linear Soln: $x=$ $\frac{5}{4}\sin(2t)-\frac{1}{4}\cos(2t)+\frac{9}{4}e^{-10t}$

$Solution: x = 5e^t - \frac{5e^t}{4}$ *t* +

The Laplace transform of a function $f(t)$ is a new function $F(s)$ determined by the definition below. Notice that the variable changed from t to s . People sometimes say that formulas with t are in the "time domain" and formulas with s are in the "frequency domain".

• In practice, we can just use a table of common Laplace transforms, but where does this table come from?

Definition: $\mathscr{L}[f(t)] = \lim_{M \to 0}$ *^M*→∞ ∫ *M* 0 *f*(*t*)*e*−*st* d*t* ∞ $\mathscr{L}[f(t)] =$

Calculate the Laplace transforms of using the definition $\mathscr{L}[f(t)] = \int f(t)e^{-st}dt$. ∫ ∞ 0 $\mathscr{L}[f(t)] = \int f(t)e^{-st}dt$

 $G(s) = |e^{3t} e^{-st} dt = |e^{(3-s)t} dt$ $= e^{(3-s)t}$ $= 0 - e^{0} =$ ∫ oo $\begin{array}{ccc} 0 & & \infty & \infty & \setminus \end{array}$ oo O 1 3-sem 5 oo O 1 3-sem 6 1 s-3

 $g(t) = e^{3t}$

if s>3 we can think of e(3-s)[∞] as e-∞ or O. Technically this is lim e(3-s)N. N→∞

Laplace transforms

Common functions

These tables assume *a*, *b*, *n* are constants.

For $y' + a(t)y = f(t)$, let $A(t)$ be any anti-derivative of $a(t)$. $y = (\int e^{A(t)} f(t) dt) e^{-A(t)}$

- **Big formula:** $y = (e^{A(t)} f(t) dt) e^{-A(t)}$.
-
-

Summary of 1st order linear

Integrating factor: Multiply the ODE by $M(t)$, then force the left-hand side to look like the Product Rule. (This will always lead to $M(t) = e^{A(t)}$.)

Variation of parameters: Assume $y(t) = g(t)e^{-A(t)}$. Plug this into the ODE (using the Product Rule) and get formulas for g' , then g , and finally y .

Laplace transforms: Take the Laplace transform of the whole IVP. This will \bullet be an equation involving $Y = Y(s)$. Use basic algebra to solve for Y , then write Y as a sum of partial fractions, then use the inverse Laplace transform to get from $Y(s)$ back to $y(t)$.

Partial differential equation or PDE Ordinary differential equation or ODE Initial value problem or IVP Initial condition or IC or initial value **Order** Explicit solution Implicit solution Particular solution or specific solution General solution

In standard form, a first-order linear ODE for $y(t)$ is $a(t)y' + b(t)y = g(t).$ In standard form, a second-order linear ODE for $y(t)$ is $a(t)y'' + b(t)y' + c(t)y = f(t)$.

Second-order linear

coefficients non-homogeneous term

- In standard form, a first-order linear ODE for $y(t)$ is $a(t)y' + b(t)y = g(t).$ In standard form, a second-order linear ODE for $y(t)$ is $a(t)y'' + b(t)y' + c(t)y = f(t)$.
- If $f(t) = 0$ (constant zero function), the ODE is **homogeneous**. If $f(t) \neq 0$, the ODE is **non-homogeneous**. To solve a non-hom. ODE, we will first think about the hom. version. Very often we will look at ODEs with constant coefficients:

Second-order linear

 $a y'' + b y' + c y = f(t)$

Consider the homogeneous linear ODE Given¹ that $y = t^4$ and $y = t$ are both solutions, ... Is $y = 8t^4$ a solution? Is $y = t + t^4$ a solution? Is $y = t^7$ a solution? Is $y = 390 t^7$ a solution?

1. You would *not* be expected to find this yourself. When we solve higher-order ODEs in this class, they will almost always have constant coefficients.

$t^3y''' - 3t^2y'' + 4ty' - 4y = 0.$