

Analysis 2 Tuesday, 4 June 2024

Warm-up: Describe all functions *y*(*t*) for which $y'' = 40t^3$.

y'' = 4Ot3 $y' = 10t^4 + C$ y = 2t5 + Ct + D

Usually an order n differential equation will have n arbitrary constants in its general solution.

This should be almost obvious for ODEs like Order 2: $y'' = −9.8 → y = −4.9t^2 + C_1t + C_2$ Order 3: $y''' = 1$ \rightarrow $y =$ 1 $\frac{1}{6}t^3 + C_1t^2 + C_2t + C_3$

-
-

Order 1: $y' = \frac{\partial y}{\partial x}$ cos(*t*) 10*y*

Order 3: $t^3y''' - 2ty' + 4y = 0$ → $y = C_1t^2 +$

 $y = \pm \sqrt{C + \frac{1}{5}}$ $\frac{1}{5}$ sin(*t*) *C*2 $\frac{c_2}{t^2}$ + $C_3 t^2 \ln(t)$

but it's also true for more complicated ones:

In standard form, a first-order linear ODE for $x(t)$ is $a(t)x' + b(t)x = f(t).$ In standard form, a second-order linear ODE for $x(t)$ is $a(t) x'' + b(t) x' + c(t) x = f(t).$

Higher-order linear

coefficients non-homogeneous term

Order *n*: $x^{(n)} + x^{(n-1)} + \cdots + x' + x = 0.$

Higher-order linear

In standard form, a first-order linear ODE for $x(t)$ is In standard form, a second-order linear ODE for $x(t)$ is

If not, the ODE is called **non-homogeneous**. \circledcirc Mostly we will look at ODEs with **constant coefficients**: \circledcirc

- $a(t)x' + b(t)x = f(t).$ $a(t) x'' + b(t) x' + c(t) x = f(t).$
- If $f(t) = 0$ (constant zero function), the ODE is called **homogenous**.
	-
	- $ax'' + bx' + cx = f(t)$.

Because $(f + g)' = f' + g'$ and $(cf)' = c \cdot f'$ for constant c ,

If $f(t)$ and $g(t)$ are solutions to a homogeneous linear ODE then any function

This is called the "principle of superposition". The third-order homogeneous linear ODE

has solutions $y = t$, $y = t\ln(t)$, and $y = t^4$ (don't worry about how I found those functions). The general solution to that ODE must therefore be

$$
y = C_1 t +
$$

 $f(t) + \underline{\hspace{0.2cm}} g(t),$

. $y = C_1 t + C_2 t \ln(t) + C_3 t^4$

$$
y''' - \frac{3}{t}y'' - \frac{4}{t^2}y' - \frac{4}{t^3}y = 0,
$$

where the blanks are *numbers*, will also be a solution.

Because $(f + g)' = f' + g'$ and $(cf)' = c \cdot f'$ for constant c ,

If $f(t)$ and $g(t)$ are solutions to a homogeneous linear ODE then any function

This is called the "principle of superposition".

- For any order *n* homogeneous linear ODE, there must be some functions ${\rm y}_1(t),\ldots,{\rm y}_n(t)$ such that the <u>general solution</u> to that ODE is $y_1(t), \ldots, y_n(t)$
	-
- Those fns. form what is called a **fundamental set of solutions** for the ODE. \circledcirc
- So the real question is how to find these "fundamental solutions". ◈
	- In this course, we will only answer this for constant coefficients. \circ

 $f(t) + \underline{\hspace{0.2cm}} g(t),$

. $y = C_1 y_1(t) + C_2 y_2(t) + \cdots + C_n y_n(t)$

where the blanks are *numbers*, will also be a solution.

Task 1b: Give the general solution to $x''+3x'-10x=0$.

Answer: $x = C_1e^{2t} + C_2e^{-st}$

$x = e^{rt}$

For a second-order homogeneous linear ODE with constant coefficients , *ay*′′ + *by*′ + *cy* = 0 the **characteristic polynomial** is $ar^{2} + br + c$.

Because the letter x might be used in the ODE, it is common to use a different letter (usually r) for the variable in this polynomial.

For an ODE with order n, we get a degree n polynomial. \circledcirc

Characteristic...

Task 3a: Give the characteristic equation for the ODE $y'' - 6y' + 13y = 0$. Task 2: What functions have $y'' = -y$? (Char. polyn. $r^2 + 1$.) r² - 6r + 13 = 0 Full list: any C1sin(t) + C2COs(t).

Task 3b: Solve the characteristic equation (that is, find the roots of the characteristic polynomial.) r = 3+2i, r = 3-2i

Task 3c: Solve the ODE. That is, describe all functions $y : \mathbb{R} \to \mathbb{R}$ for which $y'' - 6y' + 13y = 0$.

 $x = C_1e^{3t}sin(2t) + C_2e^{3t}cos(2t)$

.

The general solution to an order n homogeneous linear ODE is always C_1 + C_2 + … + C_n

The issue is finding the functions to put in those blanks. \circledcirc • If the ODE has constant coefficients, the roots of the characteristic polynomial will tell us what functions to use.

Fact: For each root $r = \lambda \pm \mu i$ with multiplicity m, the functions , , , are solutions, and this process gives a fundamental set of solutions to the ODE. $e^{\lambda t}$ sin(μt) $te^{\lambda t}$ sin(μt) $\ddot{\cdot}$ $t^{m-1} e^{\lambda t} \sin(\mu t)$, \bullet $t^{m-1} e^{\lambda t} \cos(\mu t)$, , , $e^{\lambda t}$ cos(μt) $te^{\lambda t}$ cos(μt) $\ddot{\cdot}$ $t^{m-1}e^{\lambda t}\cos(\mu t)$

If r = λ is a real number, we just have $e^{\lambda t}cos(0t) = e^{\lambda t}$ and $e^{\lambda t}sin(0t) = 0$.

Fact: For a second-order linear homogeneous ODE with constant coefficients, there are only three possibilities for the general solution:

- Distinct real roots α, β
- Complex roots $\lambda \pm \mu i \rightarrow$ $\lambda \pm \mu i$ \rightarrow $C_1 e^{\lambda t}$
- Repeated real root λ

Example: Solve $x'' + 14x' + 49x = 0.$ r2 + 14r + 49 = O $(r + 7)^2 = 0$

$$
\alpha, \beta \rightarrow C_1 e^{\alpha t} + C_2 e^{\beta t}
$$

\n
$$
\alpha, \beta \rightarrow C_1 e^{\alpha t} + C_2 e^{\beta t}
$$

\n
$$
\alpha, \beta \rightarrow C_1 e^{\alpha t} + C_2 e^{\beta t}
$$

\n
$$
\alpha, \beta \rightarrow C_1 e^{\alpha t} + C_2 t e^{\alpha t}
$$

Step 1. Find the general solution to y''-1Oy'+29y=O using the characteristic polynomial. Step 2. Find C1 and C2 using the initial conditions.

Example: Solve $y'' - 10y' + 29y = 0$, $y(0) = 7$, $y'(0) = 30$. ODE IC IC

Step 1. Take Laplace transform of the entire ODE. Step 2. Solve for Y as sum of partial fractions. Step 3. Get y from Y.

An order 2 IVP will have *two* initial conditions. These could be two $y(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}$,

Corps

but often one IC will use the derivative.

-
-

At this point, we have talked about how to solve…

- first-order separable (this includes direct and autonomous).
- first-order linear (regardless of whether it is homogeneous and/or has constant coefficients).

• You can choose from VoP, IF, big formula, or (for IVP) Laplace. homogeneous linear with constant coefficients (any order, but 2 is common). \circledcirc Always use characteristic polynomial.

We have one more category to discuss: non-homogeneous linear with constant coefficients.