

Warm-up: If $(Ae^{7t})' + Ae^{7t} = 3e^{7t}$, what is the number A?

AMALYSES 2 Thursday, 6 June 2024 Monday, 10 June 2024

For any n^{th} order homogeneous linear ODE for y(t), the general solution always looks like $y = C_1 + C_2 + \dots + C_n$ The only issue is finding the "fundamental solutions" to put in those blanks. If the ODE has constant coefficients, like ay'' + by' + cy = 0,then the roots of the characteristic polynomial $ar^{2} + br + c = 0$ will tell us what functions to use.

- Real root α

 \rightarrow use $e^{\alpha t}$ for one of the blanks. Complex roots $\alpha \pm i\beta \rightarrow \text{use } e^{\alpha t} \sin(\beta t)$ and $e^{\alpha t} \cos(\beta t)$ for two blanks. If multiplicity m > 1, also multiply by t (then t^2 , t^3 ,... up to t^{m-1}).

Example: Solve $x^{(5)} - 7x^{(4)} + 17x'' - 47x'' + 72x' + 144x = 0$. $r^{5} - 7r^{4} + 17r^{3} - 47r^{2} + 72r + 144 = 0$ This is hard part. (r+1)(r-4)(r-4)(r+3i)(r-3i) = 0the only ($e^{4l} + C_4 sin(3l) + C_5 cos(3l)$ Order doesn't matter: $x = C_{1}sin(3t) + C_{2}e^{-t} + \cdots$ is fine. Also $x = C_{1}sin(-3b) + \cdots$ is fine because C_{1} can be $-C_{1}$.

$$X = C_1 e^{-t} + C_2 e^{4t} + C_3 e^{4t}$$

Real root α \rightarrow Complex roots $\alpha \pm i\beta$

use $e^{\alpha t}$ for one of the blanks. \rightarrow use $e^{\alpha t} \sin(\beta t)$ and $e^{\alpha t} \cos(\beta t)$ for two blanks. If multiplicity m > 1, also multiply by t (then t^2 , t^3 ,... up to t^{m-1}).

Every homogeneous linear ODE with constant coefficients is solved exactly like this. Aside from factoring the polynomial, they can never be difficult tasks. In this class, we will mostly use 2nd order ODEs (so 2nd degree polynomial), 0 and for 3rd or higher the roots will be easy to find (look at ± divisors of the

constant term in the polynomial).

There are two types of linear ODEs that are difficult: Non-constant coefficients — too hard for this course (unless first-order). 0 Non-homogeneous — hard, but we will do it. 0

If we want to solve the IVP there are two options: use Laplace transforms; OR 0 0

If we want to solve the ODE y'' + y' - 20y = 0then Laplace transforms are not as good.

HOMOGENEOUS LUNCAT

y'' + y' - 20y = 0, y(0) = 1, y'(0) = 9

use characteristic polynomial to find general solution, then find C_1 and C_2 .

Nomacinconcens linear

If we want to solve the IVP

there are two options:

- use Laplace transforms; OR 0
- 0 coefficients" (new) to find general solution, then find C_1 and C_2 .

If we want to solve the ODE y'' + y' - 20y = 5tthen Laplace transforms are not as good.

y'' + y' - 20y = 5t, y(0) = 1, y'(0) = 8

use characteristic polynomial together with the "method of undetermined

If this slide does not make sense to you, you can just ignore it 😎

 $\vec{b} = [4,0,-3]$

-5

3x + 8y + 4z = 0

3x + 8y + 4z = -40

ODE, then the *general* solution to that ODE is where y_{Hom} is the general solution to the corresponding homogeneous equation.

It may feel different but this is extrem

There is a problem, though: in order to find the solution to the non-hom. • How can we find y_{NH} in the first place?

NON-ACMOREMECUS LINEAT

- *Fact:* If y_{NH} is one *particular* solution to a non-homogeneous linear
 - $y = y_{\rm NH} + y_{\rm Hom}$

ely similar to
$$\begin{bmatrix} x \\ y \end{bmatrix} = \overrightarrow{P_0} + u\overrightarrow{a} + v\overrightarrow{b}.$$

equation, we need to already know one solution to the non-hom. equation!

Non-homogeneous linear

To solve ay'' + by' + cy = f(t), we guess the format of $y_{NH}(t)$ from f(t).

\int	\mathcal{Y}_{NH}
a ekt	A ekt
$a \sin(kt)$	$A \sin(kt) + B c$
$a \cos(kt)$	$A \sin(kt) + B c$
$a t^k + \cdots$	$A t^k + \cdots + Y$

k is known from f(b). A, B, ... are unknown.

 $\cos(kt)$

 $\cos(kt)$

* This assumes there is no "resonance" (next lecture).

t + Z

Example 1: What is the format of $y_{\rm NH}$ for $y'' - 4y = 18e^{6t}$?

Example 2: What is the format of y_{NH} for $y'' - 4y = 18e^{6t} + 10\sin(8t)$? Answer: $y_{NH} = A e^{6t} + B sin(8t) + C cos(8t)$ for some A, B, C. In fact it will be $y_{NH} = 9e^{6t} - cos(8t) - \frac{1}{2}sin(8t)$.

Answer: YNH = Aeek for some number A.

Example 1 again: Find one particular solution to $y'' - 4y = 18e^{6t}$.

 $(Ae^{6t})'' - 4(Ae^{6t}) = 18e^{6t}$

 $A = \frac{9}{16}$

Answer: $y = \frac{9}{16}e^{6k}$ is one particular solution to the ODE.

We know $y_{NH} = Ae^{6t}$ for some number A, but what is A? Plug $y = Ae^{6t}$ into the ODE!

Example 1 again: Find one particular solution to $Y_{\rm NH} = \frac{9}{16} e^{6t}$ Example 1 again again: Find the general solution to $y'' - 4y = 0 \rightarrow r^2 - 4 = 0 \rightarrow r = \pm 2$ so $y_{Hom} = C_1 e^{2t} + C_2 e^{-2t}$ $y = \frac{9}{16}e^{6t} + C_1e^{2t} + C_2e^{-2t}$

 $y'' - 4y = 18e^{6t}$.

$y'' - 4y = 18e^{6t}$.

Hard task: Solve $y'' + 4y = t^2$, y(0) = 1, y'(0) = 6. Option A: Step 1. Find the general solution to $y' + 4y = t^2$. For non-hom., this requires (in either order) 1a. Find yhom for y''+4y = 0. 1b. Find ynn for y"+4y = l^2 . Then y = yhom + ynh. Step 2. Find C1, C2.

Option B: Laplace From f = y' we get $\mathcal{L}[y''] = s^2 Y - sy(0) - y'(0)$.

Answer: $y = \frac{1}{4}e^2 - \frac{1}{8} + 3sin(2e) + \frac{9}{8}cos(2e)$

tn	<u>n!</u> <u>sn+1</u>
f'(t)	s F(s) - f(s)

