

Warm-up: If $(Ae^{7t})' + Ae^{7t} = 3e^{7t}$, what is the number A?

Analysis 2 Thursday, 6 June 2024 Monday, 10 June 2024

For any nth order homogeneous linear ODE for $y(t)$, the general solution always looks like $y = C_1 + C_2 + \cdots + C_n$ • The only issue is finding the "fundamental solutions" to put in those blanks. **o** If the ODE has constant coefficients, like $ay'' + by' + cy = 0,$ then the roots of the characteristic polynomial will tell us what functions to use. $ar^{2} + br + c = 0$

- Real root α \rightarrow use $e^{\alpha t}$ for one of the blanks.
-
- If multiplicity $m > 1$, also multiply by t (then t^2 , t^3 ,... up to t^{m-1}).

Complex roots $\alpha \pm i\beta \rightarrow \alpha e^{\alpha t} \sin(\beta t)$ and $e^{\alpha t} \cos(\beta t)$ for two blanks. 2 , *t* 3 ,... up to *t m*−1

Example: Solve $x^{(5)} - 7x^{(4)} + 17x''' - 47x'' + 72x' + 144x = 0$. $r^5 - 7r^4 + 17r^3 - 47r^2 + 72r + 144 = 0$ $(r + 1)(r - 4)(r - 4)(r + 3i)(r - 3i) = 0$ x^{2} + C4sin(3t) + C5Cos(3t) This is the only hard part. Order doesn't matter: x = C1sin(3t) + C2e-t + ⋯ is fine. Also $x = C_1$ sin(-3t) + \cdots is fine because C_1 can be - C_1 .

$$
X = C_1e^{-t} + C_2e^{4t} + C_3te
$$

Real root α \rightarrow use $e^{\alpha t}$ for one of the blanks.

Complex roots $\alpha \pm i\beta \rightarrow \alpha e^{\alpha t} \sin(\beta t)$ and $e^{\alpha t} \cos(\beta t)$ for two blanks. If multiplicity $m > 1$, also multiply by t (then t^2 , t^3 ,... up to t^{m-1}). 2 , *t* 3 ,... up to *t m*−1

There are two types of linear ODEs that are difficult: Non-constant coefficients — *too hard* for this course (unless first-order). \circledcirc Non-homogeneous — hard, but we will do it. \circledcirc

Every homogeneous linear ODE with constant coefficients is solved exactly like this. Aside from factoring the polynomial, they can never be difficult tasks. In this class, we will mostly use 2nd order ODEs (so 2nd degree polynomial), \circledcirc and for 3rd or higher the roots will be easy to find (look at \pm divisors of the

constant term in the polynomial).

Homogeneous linear

If we want to solve the IVP there are two options: use Laplace transforms; OR \circledcirc \circledcirc

y″ + *y*′ − 20*y* = 0, *y*(0) = 1, *y*′(0) = 9

use characteristic polynomial to find general solution, then find C_1 and $C_2.$

If we want to solve the ODE then Laplace transforms are not as good. *y*′′+ *y*′− 20*y* = 0

Non-homogeneous linear

- If we want to solve the IVP
- there are two options:
- use Laplace transforms; OR \circledcirc
- \circledcirc coefficients" (new) to find general solution, then find C_1 and $C_2.$

use characteristic polynomial together with the "method of undetermined

If we want to solve the ODE then Laplace transforms are not as good. *y*′′+ *y*′− 20*y* = 5*t*

y′′+ *y*′− 20*y* = 5*t*, *y*(0) = 1, *y*′(0) = 8

If this slide does not make sense to you, you can just ignore it

 $a = [0, -1, 2]$

b = [4,O,-3]

 -5

$3x + 8y + 4z = 0$

$3x + 8y + 4z = -40$

Non-homogeneous linear

- *Fact:* If y_{NH} is one *particular* solution to a non-homogeneous linear
	- $y = y_{NH} + y_{Hom}$

ODE, then the *general* solution to that ODE is where $y_{\rm Hom}$ is the general solution to the corresponding homogeneous equation.

It may feel different but this is extrem

There is a problem, though: in order to find the solution to the non-hom. • How can we find y_{NH} in the first place?

ely similar to
$$
\begin{bmatrix} x \\ y \end{bmatrix} = \overrightarrow{P_0} + u\overrightarrow{a} + v\overrightarrow{b}
$$
.

equation, we need to already know one solution to the non-hom. equation!

Non-homogeneous linear

To solve $ay'' + by' + cy = f(t)$, we guess the format of $y_{NH}(t)$ from $f(t)$.

k is known from f(t). A, B, … are unknown.

 $cos(kt)$

 $cos(kt)$

* This assumes there is no "resonance" (next lecture).

Example 1: What is the format of y_{NH} for ? *y*′′− 4*y* = 18*e*6*^t*

Example 2: What is the format of y_{NH} for $y'' - 4y = 18e^{6t} + 10 \sin(8t)$? Answer: $ynH = A e^{6t} + B sin(8t) + C cos(8t)$ for some A, B, C. In fact it will be

 $y_{NH} = 9e6t - cos(xt) - \frac{1}{2}sin(xt).$ 2

Answer: ynH = Ae^{6t} for some number A.

Example 1 again: Find one particular solution to *y*′′− 4*y* = 18*e* . 6*t*

Plug y = Ae^{6t} into the ODE!

 $(Ae^{6t})'' - 4(Ae^{6t}) = 18e^{6t}$

Answer: $y = \frac{9}{16}e^{6t}$ is one particular solution to the ODE. 16

We know ynh = Ae^{6t} for some number A, but what is A ?

… $A = \frac{9}{11}$ 16

y′′− 4*y* = 18*e* . 6*t*

Example 1 again: Find one particular solution to $y'' - 4y = 0$ \rightarrow $r^2 - 4 = 0$ \rightarrow $r = \pm 2$ so yHom = $C_1e^{2t} + C_2e^{-2t}$ Example 1 again again: Find the general solution to $y_{\text{vH}} = \frac{9}{16} e^{6t}$ NH 16 $y = \frac{9}{11}e^{6t} + C_1e^{2t} + C_2e^{-2t}$ 16

y′′− 4*y* = 18*e* . 6*t*

Hard task: Solve $y'' + 4y = t^2$, $y(0) = 1$, $y'(0) = 6$. 2 Option A: Step 1. Find the general solution to $y'' + 4y = t^2$. For non-hom., this requires (in either order) 1a. Find yHom for y''+4y = O. $1b.$ Find ynH for y"+4y = $t^2.$ Then y = yHom + yNH. Step 2. Find C1, C2.

Option B: Laplace From $f = y'$ we get $\mathscr{L}[y''] = s^{2}y' - sy(0) - y'(0)$.

Answer: $y = \frac{1}{2}k^2 - \frac{1}{2} + 3sin(2k) + \frac{9}{2}cos(2k)$ 4 1 8

 $, y(0) = 1, y'(0) = 6$

9 8

