Analysis 2, Summer 2024 List 7 Slope fields, autonomous ODEs, separable ODEs

- 168. Classify each equation below (the ODE is not shown) as an "implicit solution" or an "explicit solution".
 - (a) $x^{2} = \sin(3t)$ (b) $y = e^{t} + C$ (c) $y = xe^{x} - 5y^{3}$ (d) $y = xe^{x} - 5x^{3}$ (e) $\frac{-1}{x^{5}} = t^{7}$ (f) $\ln(y) = 9x$

169. Match the following ODEs to their slope fields. (\mathbf{x})

(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}$		
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x}{y}$	(III)	(IV)
(d)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-y}{x}$		$(\ \) \ \) \ \ \ \ \ \ \ \ $
		<pre>- ~ ~ ` / / / ` ` ` ` ` ` / / / / ` ` ` ` ` ` ` ` ' ' ' ' ' ' ' ' ' ' '</pre>	

An ordinary differential equation (ODE) for y(x) is **direct** (or **directly integrable**) if it can be written in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

for some function f. An **autonomous** ODE for y(x) can be written in the form $\frac{\mathrm{d}y}{\mathrm{d}x} = g(y)$

for some function g. A **separable** ODE for y(x) can be written in the form $\frac{\mathrm{d}y}{\mathrm{d}x} = g(y) \cdot h(x)$

for some functions g and h.

- 170. Classify each ODE as "direct" or "autonomous", and then solve it.
 - (a) $y' = x^2$ (b) $y' = y^2$ (c) $y' = t^2$ (d) $x' = x^2$

For part (b), you can assume y = y(t) or you can assume y = y(x). It is not clear from the ODE what the input variable is.

- 171. "Every directly integrable ODE is separable." Either use formulas to explain why this is true *or* give an example that shows this claim is false.
- 172. "Every separable ODE is autonomous." Either use formulas to explain why this is true *or* give an example that shows this claim is false.

- 173. Solve the autonomous ODE $x' = e^x$.
- ≈ 174 . Solve the autonomous ODE $y' = \sin(y)$.
 - 175. Solve the autonomous ODE $y' = k y^2$. Your answer should be an explicit general formula for y, but it will also use the letter k.
 - 176. (a) Solve the autonomous ODE $y' = \frac{1}{y}$.
 - (b) Solve the autonomous IVP $y' = \frac{1}{y}$, y(1) = 3.
 - (c) Solve the autonomous IVP $y' = \frac{1}{y}$, y(0) = -1.
 - $\dot{\succ}$ (d) Solve the autonomous IVP $y' = \frac{1}{y}, \ y(-1) = 0.$
 - 177. Solve the separable ODE $y' = 2^{y+t}$. This is an ODE, so you should give the general explicit solution, if possible.
 - 178. Solve the separable IVP $(1 + x^3) \cdot y' = x^2 y^2$, y(0) = -1. This is an IVP, so you should give the particular explicit solution, if possible.
 - 179. One of the three slope fields below corresponds to a directly integrable ODE. Which one?

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	(B)	(C)
· · · · · / / /	$\wedge \wedge \wedge - / / /$	(/ / / / / / / / / / / / / / / / / / /
$\land \land \land \land - \checkmark / /$	$\land \land \land \frown - \checkmark \land \land$	(/ / / / / / / / / / / / / / / / / / /
· · · · · / / /		
$\land \land \land \land - \checkmark / /$	$/// / - \times \times \times$	
· · · · · / / /	I I I $ \times$ \times \times	
$\land \land \land \frown - \checkmark \land \land$	1 1 7 - 1 1	

- 180. One of the three slope fields from Task 179 corresponds to an autonomous ODE. Which one?
- 181. For each of the slope fields below, state whether the associated ODE is directly integrable, autonomous, both, or neither.

$(a) \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1$	(b) $\begin{vmatrix} 1 & 7 & -7 & 1 & 1 \\ 1 & 1 & 7 & -7 & $	(c)
(d)	$(e) \left\{ \begin{array}{c} - \times & / & / & / & / & / & / \\ & - \times & / & / & / & / & / \\ & \times & - \times & / & / & / \\ & & & \times & - \times & / & / \\ & & & & & \times & - \times & / \\ & & & & & & & \times & - \times \\ & & & & & & & & \times & - \times \\ & & & & & & & & & \times & - \times \end{array} \right\}$	(f)

182. Newton's Law of Cooling states that the rate at which an object cools is proportional to the difference in temperature between the object and its environment. As an equation,

$$\frac{\mathrm{d}y}{\mathrm{d}t} = k(T_{\mathrm{env}} - y)$$

where k and T_{env} are constants. Find the general solution to this ODE (the answer $y(t) = \cdots$ will have t, k, T_{env} , and a new constant C in the formula).

☆183. A hot drink is cooling down according to Newton's Law of Cooling. With the external temperature at a constant 10° C, the drink has cooled from 90° to 85° in 4 minutes. How long will it take to cool down to 60°?

☆184. A boat is moving upstream, so the water applies a force F(t) = -m x''(t) that is proportional to the velocity v(t) = x'(t) of the boat. In formulas,

$$x'' = -k x' \qquad \text{or} \qquad v' = -k v.$$

The boat started its motion with velocity 1.5 m/s, and after 4 seconds it had velocity 1.00548 m/s.

- (a) What distance had the boat traveled after 4 seconds?
- (b) What is the total distance the boat can go?
- ≈ 185 . A cylindrical tank has a hole in the bottom, where the liquid flows out with speed proportional to the square root of the remaining volume of liquid in the tank (that is, $V' = k\sqrt{V}$). At the start the tank was full, and after 5 minutes it is half empty. How long will it take until the tank becomes completely empty?
 - 186. For each ODE below: if it is separable, solve it; if it is not separable, write "not separable".

(a)
$$y' = \sin(t)\sqrt{y}$$

(b) $x' = 3t^4x^5$
(c) $y' = 4e^{3y}\cos(t)$
(d) $y' = \frac{y^2 + 1}{yt}$
(e) $yty' = 1 + y^2$
(f) $y' = 3\ln(x)x^2y$
(g) $\cos(x)x' = \sqrt{t}\sin(x)$
(h) $\frac{y'}{t^3} = \sin(3t)y^2$
(i) $yy' = \sqrt{\sin(t)}\cos(t)e^{-y^2}$
 $\stackrel{\checkmark}{\asymp}(j) x' = (x^2 - x - 1)t$
 $\stackrel{\checkmark}{\min}(k) y' = \frac{\sin(t)}{\sin(y)}$