
Analysis 2, Summer 2024
List 8

First-order linear ODEs

187. Evaluate the following integrals using integration by parts:

(a)
∫

x sin(x) dx = sin(x)− x cos(x) + C

(b)
∫

3x ln(x) dx = 3
2
x2 ln(x)− 3

4
x2

(c)
∫

e5t/2 sin(5t) dt = 2
25
e5t/2 sin(5t)− 4

25
e5t/2 cos(5t)

An order n linear ODE for y can be written in the form

an y
(n) + · · ·+ a2 y

′′ + a1 y
′ + a0 y = f,

where ai = ai(t) and f = f(t) are functions. The equation is called homogeneous
if f(t) = 0 and non-homogeneous otherwise. If every ai(t) is a constant function,
the equation has constant coefficients (note f(t) can still be non-constant).

188. For each ODE below, state whether it is linear or not:
(a) y · y ′ = 5t+ 2 not linear

(b) y ′ + y = t2 linear

(c) y ′ + y2 = t2 not linear

(d) y ′ + ty = t3 linear

(e) y′′

t2
= 3et + y linear (can be re-written as y′′ − t2y = 3t2 sin(t))

(f) y = y ′ − et linear

(g) y ′ = ey + t not linear

189. What is the order of the linear ODE t4y′′ + t3y ′ − y = t5? order 2 because of y′′.

190. The following ODEs are linear. Label each as homogeneous or non-homogeneous.
(a) y ′ + (3t2 − 6t+ 14)y = 0 homogeneous

(b) 2x′ + 3x = 4 non-homogeneous

(c) x′+(3t−1)x = t2x homogeneous (can be re-written as x′+(3t−1−t2)x = 0)

(d) y′′ = 9y homogeneous

(e) y′′ + 9y ′ + t = 0 non-homogeneous (y′′ + 9y ′ + 0y = −t)

191. “Every homogeneous first-order linear ODE is autonomous.” Either use formulas
to explain why this is true or give an example that shows this claim is false.
False . One example: y ′ + y = 1 is not autonomous.



192. “Every homogeneous first-order linear ODE is separable.” Either use formulas
to explain why this is true or give an example that shows this claim is false.
True : y ′ + a(x)y = 0 is also y ′ = −a(x)y, which is exactly y ′ = h(x)g(y), and

therefore separable, with h(x) = −a(x) and g(y) = y.
The homogeneous first-order linear ODE y′ = −a(x) · y has general solution

y = Ce−A(x),
where A(x) is any antiderivative of a(x), meaning A′(x) = a(x).
For the non-homogeneous first-order linear ODE y ′ + a(x) · y = f(x), the
general solution is

y =

(∫
eA(x) · f(x) dx

)
e−A(x).

This can also be written as y = 1
M(x)

∫
M(x)f(x) dx, where M(x) = eA(x) is called

the “integrating factor”.

193. Solve the following differential equations:
(a) y ′ − 2y = 7. Method 1: Multiply the whole thing by e−2x to get

e−2xy ′ − 2e−2xy = 7e−2x(
e−2xy

)′
= 7e−2x

e−2xy = −7
2
e−2x + C

y = −7
2
+ Ce2x

Method 2: Use the formula from the box to get

y ′ =
(∫

e−2x · 7 dx
)
e2x =

(−7

2
e−2x + C

)
e2x = −7

2
+ Ce2x .

(b) y ′ = y + 2x− 3.
This is of the form y ′ + ay = b with a(x) = −1 and b(x) = 2x − 3. Let
A(x) = −x. Then

y ′ = ex
(∫

e−x(2x− 3) dx
)
= ex

(
(1− 2x)e−x + C

)
= Cex − 2x+ 1 .

(c) y ′ + (sin t)y = ecos t. y = ecos t(t+ C)

(d) y ′ −
(
3x2 − 2x+ 3

x2 + 1

)
y − e3x

x2 + 1
= 0. a(x) = 3x2−2x+3

x2+1
= 3− 2x

x2+1
.

A(x) = ln(x2 + 1)− 3x = ln

(
x2 + 1

e3x

)
leads to y =

e3x

x2 + 1
(x+ C) .

194. Solve the following initial value problems:
(a) y′ = y+2x−3, y(0) = 9. From Task 193b, y = Cex−2x+1 for some C.

For the IVP, 9 = Ce0 − 2(0) + 1 = C + 1, so y = 8ex − 2x+ 1 .

(b) y ′ =
−xy

x+ 1
, y(1) = 3. From

∫
dy

y
=

∫
−x

x+ 1
dx we get ln(y) = ln(x +

1)− x+ C, and so the general solution is y = Ce−x(x+ 1). From y(1) = 3

we get C = 3e
2

and so y = 3
2
e1−x(x+ 1) .



(c) y ′

cos(t)
+ y tan(t) =

ecos t

cos(t)
, y(0) = e. After multiplying this entire ODE

by cos(t), it becomes exactly the ODE from Task 193c. The general solu-
tion is thus y = ecos t(t+C), and y(0) = e implies C = 1, so y = ecos t(t+ 1) .

(d) x2 y ′ = y2, y(2) = 4. General: y =
x

Cx+ 1
. Initial condition leads to

C = 1
4

and y =
4x

4− x
.

195. Solve the initial value problem
2y ′ − y = 4 sin(3t), y(0) = y0,

and then answer the following questions:
(a) For which values of y0 does y(t) go towards +∞ as t → +∞?
(b) For which values of y0 does y(t) go towards −∞ as t → +∞?
(c) For which values of y0 does y(t) remain bounded as t → +∞?

This is a linear first-order ODE with general solution
y = −4

37

(
sin(3t) + 6 cos(3t)

)
+ Cet/2.

As t → ∞, the trig part −4
37
(. . .) is bounded but the exponential part Cet/2 can

go to +∞, −∞, or 0 depending on whether C is positive, negative, or 0.
Plugging in t = 0 gives y(0) = −24

37
+C, and this must equal y0, so C = 24

37
+ y0.

a) lim
t→∞

y(t) = ∞ when C > 0, which is when 24
37

+ y0 > 0, or y0 >
−24

37
.

b) When C < 0, which is y0 <
−24

37
.

b) When C = 0, which is y0 =
−24

37
.

196. Solve the non-homogeneous first-order linear ODE
y ′ − tan(t) y = 2t sec(t) (∗)

in three different ways:
(a) “Variation of parameters.” The solution to the homogeneous equation

y ′ − tan(t) y = 0

is y = C sec(t) for a constant number C. Assume that the solution to (∗) is
of the form

y = g(t) · sec(t)
for some function g(t), and determine what g(t) must be.
y ′ = g(t) sec(t) tan(t) + g′(t) sec(t), so

y ′ − tan(t) y = g(t) sec(t) tan(t) + g′(t) sec(t)− tan(t)g(t) sec(t)

y ′ − tan(t) y = g′(t) sec(t)

2t sec(t) = g′(t) sec(t)

gives that g′(t) = 2t, so g(t) = t2 + C, and thus y = (t2 + C) sec(t) .



(b) “Integrating factor.” Multiplying (∗) by any function M(t) gives

My ′ −M tan(t) y = M 2t sec(t).

If M(t) tan(t) were exactly −M ′(t), then we could re-write this as

My ′ +M ′y = M 2t sec(t)(
My

)′
= M 2t sec(t).

The solution to M tan(t) = −M ′ is M = e(−
∫
tan(t) dt). Use this to solve (∗).

y = 1
cos(t)

∫
cos(t)2t sec(t) dt = sec(t)

∫
2t dt = (t2 + C) sec(t) .

(c) Big formula. y′+a(t)y = f(t) is always solved by y =

(∫
eA(t)f(t) dt

)
e−A(t),

where A′(t) = a(t). Use a(t) = − tan(t) and f(t) = 2t sec(t) in this formula
to solve (∗).

A(t) = − log(cos(t)), so y =

(∫
elog(cos(t))2t sec(t) dt

)
e− log(cos(t))

=

(∫
2t dt

)
sec(t) = (t2 + C) sec(t) .

197. Solve the ODE
t y ′ + y = t3

using any of the three methods from the previous task.

Standard form: y ′ +
1

t
y = t2. General solution: y =

t3

4
+

C

t
.

The Laplace transform of a function f = f(t) is written L
[
f
]

and is the
function

F (s) =

∫ ∞

0

f(t)e−st dt = lim
b→∞

∫ b

0

f(t)e−st dt.

Note that L
[
f
]

is a function of “s” while f was a function of “t” (these are the
most common letters to use; what is important is that they are not the same
variable). Instead of computing integrals every time, we often use these common
examples:

f(t) tn ert sin(ωt) cos(ωt)

F (t)
n!

sn+1

1

s− r

ω

s2 + ω2

s

s2 + ω2

198. Find L
[
t2
]

by computing
∫ ∞

0

t2e−st dt. This requires integration by parts twice.

Final answer: 2

s3

199. For each of the functions below, find F (s) = L
[
f(t)

]
using the table of common

Laplace transforms.

(a) f(t) = 1. L
[
t0
]
= 0!

s0+1 = 1
s

or L
[
e0t

]
= 1

s−0
=

1

s



(b) f(t) = t. 1

s2

(c) f(t) = t5. 120

s6

(d) f(t) = et. 1

s− 1

(e) f(t) = e−t. 1

s+ 1

(f) f(t) = sin(9t). 9

s2 + 81

200. Give L −1
[ −2

s2 + 4

]
, the inverse Laplace transform of −2

s2 + 4
. That is, find a

function f(t) for which F (s) = L
[
f(t)

]
=

−2

s2 + 4
. sin(−2t) = − sin(2t)

201. Solve the equation
sY − 4− 3Y =

1

s− 5

for Y . (This is only an algebra task. It could have been on List 0.) Y =
4s− 19

s2 − 8s+ 15

202. Find numbers A and B such that 5s− 28

s2 − 10s+ 16
=

A

s− 2
+

B

s− 8
.

5s− 28

(s− 2)(s− 8)
=

A

s− 2
+

B

s− 8

5s− 28 = A(s− 8) +B(s− 2)

5s− 28 = As− 8A+Bs− 2B

5s− 28 = (A+B)s+ (−8A− 2B)

Therefore
{

A+B = 5
−8A− 2B = −28

. The solution to this system is A = 3, B = 2 .

203. Solve
6F (s) + s · F (s)− 4 =

8

s

for F (s) and then give the partial fraction decomposition of F (s).

F (s) =
−4s+ 8

s2 + 6s
=

4/3

s
+

−16/3

s+ 6

Properties:
• L

[
c ·f(t) + g(t)

]
= cL

[
f(t)

]
+ L

[
g(t)

]
for constant c.

• L
[
f(c t)

]
= 1

c
F ( s

c
) for constant c.

• L
[
ekt ·f(t)

]
= F (s− k) for constant k.

• L
[
t ·f(t)

]
= −dF

ds
. This implies L

[
tnf

]
= (−1)n · F (n)(s).

• L
[
f ′(t)

]
= s · F (s)− f(0). This implies L

[
f ′′] = s2 ·F (s)− s·f(0)− f ′(0).



204. For the functions

x(t) = tet, y(t) = e5t sin(2t), z(t) = 2t2 + e5tt3,

find X(s) = L
[
x(t)

]
and Y (s) = L

[
y(t)

]
and Z(s) = L

[
z(t)

]
.

For x, Method 1:
∫ ∞

0

tete−st dt =

∫ ∞

0

te(1−s)t dt =
1

(s− 1)2
using integration

by parts.

Method 2: Set f(t) = t, so F (s) = 1
s2

. Then L
[
e1t f(t)

]
= F (s−1) =

1

(s− 1)2
.

Method 3: Set g(t) = et, so G(s) = 1
s−1

. Then L
[
t g(t)

]
= −G ′(s) =

1

(s− 1)2

Y (s) =
2

(s− 5)2 + 4
Z(s) =

4

s3
+

6

(s− 5)4

205. Find the function from its Laplace transform:

(a) F (s) =
1

s2 + 16
. 1

4
sin(4t)

(b) F (s) =
9

s2 + 3s
. F (s) = 9

s(s+3)
= 3

s
+ −3

s+3
, so f(t) = 3− 3e−3t .

(c) X(s) =
s− 4

s2 − 4
. F (s) = s−4

(s+2)(s−2)
=

3/2

s+ 2
+ −1/2

s−2
, so f(t) = 3

2
e−2t − 1

2
e2t .

(d) Y (s) =
7s+ 6

s2 + 9
. F (s) = 7

(
s

s2+9

)
+2

(
3

s2+9

)
, so f(t) = 7 cos(3t) + 2 sin(3t) .

(e) F (s) =
5s− 28

s2 − 10s+ 16
. F (s) =

3

s− 2
+

2

s− 8
from Task 202, so f(t) = 3e2t + 2e8t .

206. Re-write L
[
x′] = L

[
3x− 7y

]
as an equation with X,Y, s, and the number x(0).

Here X = X(s) is the Laplace transform of x = x(t), and similarly Y = L
[
y
]
.

sX − x(0) = 3X − 7Y

207. Solve the non-homogeneous first-order linear IVP

y ′ − 3y = e5t, y(0) = 4

in four different ways:
(a) “Variation of parameters”
(b) “Integrating factor”
(c) “Big formula”
(d) “Laplace transformation”

L
[
y ′]− 3L

[
y
]
= L

[
e5t

]
(sY − 4)− 3Y =

1

s− 5



Solving this last equation for Y (see Task 201) gives

Y =
4s− 19

s2 − 8s+ 15

y = L −1
[ 4s− 19

s2 − 8s+ 15

]
y = L −1

[ 7/2

s− 3
+

1/2

s− 5

]
y =

7

2
L −1

[ 1

s− 3

]
+

1

2
L −1

[ 1

s− 5

]
y =

7

2
e3t +

1

2
e5t

208. Solve the IVP
x′ + 6x = 8, x(0) = −4

using any of the four methods from the previous task.

Laplace: (sX − 4) + 6X =
8

s
. From Task 203,

X =
−4s+ 8

s2 + 6s
=

4/3

s
+

−16/3

s+ 6

so x =
4

3
− 16

3
e−6t .

209. RL circuit (DC): When the switch in the circuit

20 V

5 Ω

2 H

is closed, the current i = i(t) flowing through the circuit satisfies

2
di

dt
+ 5i = 20, i(0) = 0.

Solve this IVP.
Note: this task is not starred. I will never require you to analyze a circuit in
this class, but I do expect you to be able to solve 2y′+5y = 20, y(0) = 0, which
is exactly this task using different letters. i(t) = 4− 4e−2.5t

210. RL circuit (AC): If the direct-current battery in Task 209 is replaced by an
alternating current source E = 20 sin(5t),



5 Ω

2 H

the differential equation becomes

2
di

dt
+ 5i = 20 sin(5t), i(0) = 0.

Solve this IVP.
Int. factor: M = e

∫
5
2
dt = e2.5t, and (see Task 187c)∫

Mf dt = 20

∫
e2.5t sin(5t) dt = 20

(
2

25
e2.5t sin(5t)− 4

25
e2.5t cos(5t)

)
Laplace: 5I − 2sI = 20( 5

s2+25
), so

I =
100

(2s+ 5)(s2 + 25)
=

16

10s+ 25
+

4

s2 + 25
− 8 s

5s2 + 125

Either way, i =
8

5
e−2.5t +

4

5
sin(5t)− 8

5
cos(5t)

211. RC circuit, charging: When the switch in the circuit

30 V

20 Ω

0.001 F

is closed, the charge q = q(t) in the capacitor satisfies

20
dq

dt
+

1

0.001
q = 30, q(0) = 0.

Solve the IVP, and then determine lim
t→∞

q(t).

q = 0.03(1− e−50t) , so as t → ∞ we get q → 0.03 , or 30 mC.

Note: and and −+ are basically all the same.



212. RC circuit, discharging: When the switch in the circuit

30 V

A 20 Ω

0.001 F
B

is at position A, the circuit behaves like the one in Task 211. When the switch
moves to position B at t = 0, the capacitor starts discharging according to

20
dq

dt
+

1

0.001
q = 0, q(0) = 0.03

Solve this IVP. q = 0.03e−50t

213. For each of the following, your formula for q(t) will have some or all of R,C, E , Q0

as constants.
(a) Charging from zero: Solve q ′+ 1

RC
q = E

R
, q(0) = 0. q(t) = CE(1− e−t/(RC))

(b) Discharging: Solve q ′ + 1
RC

q = 0, q(0) = Q0. q(t) = Q0e
−t/(RC)

(c) Charging from a non-zero start: Solve q ′ + 1
RC

q = E
R
, q(0) = Q0.

q(t) = CE + (Q0 − CE)e−t/(RC)

(d) Compare part (c) to Task 182, Newton’s Law of Cooling. They are basically
the same, just with different names for the constants!

function(t) = a+ be−ct


