Analysis 2, Summer 2024 List 8 First-order linear ODEs

187. Evaluate the following integrals using integration by parts:

(a)
$$\int x \sin(x) dx = \sin(x) - x \cos(x) + C$$

(b) $\int 3x \ln(x) dx = \frac{3}{2}x^2 \ln(x) - \frac{3}{4}x^2$
(c) $\int e^{5t/2} \sin(5t) dt = \frac{2}{25}e^{5t/2} \sin(5t) - \frac{4}{25}e^{5t/2} \cos(5t)$

An order n linear ODE for y can be written in the form

$$a_n y^{(n)} + \dots + a_2 y'' + a_1 y' + a_0 y = f,$$

where $a_i = a_i(t)$ and f = f(t) are functions. The equation is called **homogeneous** if f(t) = 0 and **non-homogeneous** otherwise. If every $a_i(t)$ is a constant function, the equation **has constant coefficients** (note f(t) can still be non-constant).

188. For each ODE below, state whether it is linear or not:

- (a) $y \cdot y' = 5t + 2$ not linear
- (b) $y' + y = t^2$ linear
- (c) $y' + y^2 = t^2$ not linear
- (d) $y' + ty = t^3$ linear
- (e) $\frac{y''}{t^2} = 3e^t + y$ linear (can be re-written as $y'' t^2y = 3t^2\sin(t)$)

(f)
$$y = y' - e^t$$
 linear

(g)
$$y' = e^y + t$$
 not linear

189. What is the order of the linear ODE $t^4y'' + t^3y' - y = t^5$? order 2 because of y''.

190. The following ODEs are linear. Label each as homogeneous or non-homogeneous.

(a)
$$y' + (3t^2 - 6t + 14)y = 0$$
 homogeneous

- (b) 2x' + 3x = 4 non-homogeneous
- (c) $x' + (3t-1)x = t^2x$ homogeneous (can be re-written as $x' + (3t-1-t^2)x = 0$)
- (d) y'' = 9y homogeneous

(e)
$$y'' + 9y' + t = 0$$
 non-homogeneous $(y'' + 9y' + 0y = -t)$

191. "Every homogeneous first-order linear ODE is autonomous." Either use formulas to explain why this is true *or* give an example that shows this claim is false. False. One example: y' + y = 1 is not autonomous.

192. "Every homogeneous first-order linear ODE is separable." Either use formulas to explain why this is true or give an example that shows this claim is false. True: y' + a(x)y = 0 is also y' = -a(x)y, which is exactly y' = h(x)g(y), and therefore separable, with h(x) = -a(x) and g(y) = y.

The homogeneous first-order linear ODE $y' = -a(x) \cdot y$ has general solution $y = Ce^{-A(x)},$

where A(x) is any antiderivative of a(x), meaning A'(x) = a(x).

For the **non-homogeneous first-order linear ODE** $y' + a(x) \cdot y = f(x)$, the general solution is

$$y = \left(\int e^{A(x)} \cdot f(x) \,\mathrm{d}x\right) e^{-A(x)}$$

This can also be written as $y = \frac{1}{M(x)} \int M(x) f(x) dx$, where $M(x) = e^{A(x)}$ is called the "integrating factor".

193. Solve the following differential equations:

(a)
$$y' - 2y = 7$$
. Method 1: Multiply the whole thing by e^{-2x} to get
 $e^{-2x}y' - 2e^{-2x}y = 7e^{-2x}$
 $(e^{-2x}y)' = 7e^{-2x}$
 $e^{-2x}y = \frac{-7}{2}e^{-2x} + C$
 $y = \frac{-7}{2}e^{-2x} + Ce^{2x}$

Method 2: Use the formula from the box to get

$$y' = \left(\int e^{-2x} \cdot 7 \,\mathrm{d}x\right) e^{2x} = \left(\frac{-7}{2}e^{-2x} + C\right) e^{2x} = \boxed{\frac{-7}{2} + Ce^{2x}}$$

(b)
$$y' = y + 2x - 3$$
.

This is of the form y' + ay = b with a(x) = -1 and b(x) = 2x - 3. Let A(x) = -x. Then

$$y' = e^x \left(\int e^{-x} (2x - 3) \, \mathrm{d}x \right) = e^x \left((1 - 2x)e^{-x} + C \right) = \boxed{Ce^x - 2x + 1}.$$

(c)
$$y' + (\sin t)y = e^{\cos t}$$
. $y = e^{\cos t}(t+C)$
(d) $y' - \left(\frac{3x^2 - 2x + 3}{x^2 + 1}\right)y - \frac{e^{3x}}{x^2 + 1} = 0$. $a(x) = \frac{3x^2 - 2x + 3}{x^2 + 1} = 3 - \frac{2x}{x^2 + 1}$.
 $A(x) = \ln(x^2 + 1) - 3x = \ln\left(\frac{x^2 + 1}{e^{3x}}\right)$ leads to $y = \frac{e^{3x}}{x^2 + 1}(x+C)$.

194. Solve the following initial value problems:

- (a) y' = y + 2x 3, y(0) = 9. From Task 193b, $y = Ce^x 2x + 1$ for some C. For the IVP, $9 = Ce^0 - 2(0) + 1 = C + 1$, so $y = 8e^x - 2x + 1$.
- (b) $y' = \frac{-xy}{x+1}$, y(1) = 3. From $\int \frac{dy}{y} = \int \frac{-x}{x+1} dx$ we get $\ln(y) = \ln(x+1) x + C$, and so the general solution is $y = Ce^{-x}(x+1)$. From y(1) = 3 we get $C = \frac{3e}{2}$ and so $y = \frac{3}{2}e^{1-x}(x+1)$.

(c) $\frac{y'}{\cos(t)} + y \tan(t) = \frac{e^{\cos t}}{\cos(t)}$, y(0) = e. After multiplying this entire ODE by $\cos(t)$, it becomes exactly the ODE from **Task 193c**. The general solution is thus $y = e^{\cos t}(t+C)$, and y(0) = e implies C = 1, so $y = e^{\cos t}(t+1)$.

(d)
$$x^2 y' = y^2$$
, $y(2) = 4$. General: $y = \frac{x}{Cx+1}$. Initial condition leads to $C = \frac{1}{4}$ and $y = \frac{4x}{4-x}$.

195. Solve the initial value problem

$$2y' - y = 4\sin(3t), \quad y(0) = y_0,$$

and then answer the following questions:

- (a) For which values of y_0 does y(t) go towards $+\infty$ as $t \to +\infty$?
- (b) For which values of y_0 does y(t) go towards $-\infty$ as $t \to +\infty$?
- (c) For which values of y_0 does y(t) remain bounded as $t \to +\infty$?

This is a linear first-order ODE with general solution

$$y = \frac{-4}{37} \left(\sin(3t) + 6\cos(3t) \right) + Ce^{t/2}.$$

As $t \to \infty$, the trig part $\frac{-4}{37}(\ldots)$ is bounded but the exponential part $Ce^{t/2}$ can go to $+\infty$, $-\infty$, or 0 depending on whether C is positive, negative, or 0.

Plugging in t = 0 gives $y(0) = \frac{-24}{37} + C$, and this must equal y_0 , so $C = \frac{24}{37} + y_0$.

a) $\lim_{t \to \infty} y(t) = \infty$ when C > 0, which is when $\frac{24}{37} + y_0 > 0$, or $y_0 > \frac{-24}{37}$.

b) When C < 0, which is $y_0 < \frac{-24}{37}$. b) When C = 0, which is $y_0 = \frac{-24}{37}$.

196. Solve the non-homogeneous first-order linear ODE

$$y' - \tan(t) y = 2t \sec(t) \tag{*}$$

in three different ways:

(a) "Variation of parameters." The solution to the homogeneous equation $y' - \tan(t) \, y = 0$

is $y = C \operatorname{sec}(t)$ for a constant number C. Assume that the solution to (*) is of the form

$$y = g(t) \cdot \sec(t)$$

for some function g(t), and determine what g(t) must be. $y' = g(t) \sec(t) \tan(t) + g'(t) \sec(t)$, so $y' - \tan(t) y = g(t) \sec(t) \tan(t) + g'(t) \sec(t) - \tan(t)g(t) \sec(t)$ $y' - \tan(t) y = g'(t) \sec(t)$ $2t \sec(t) = g'(t) \sec(t)$

gives that g'(t) = 2t, so $g(t) = t^2 + C$, and thus $y = (t^2 + C) \sec(t)$

(b) "Integrating factor." Multiplying (*) by any function M(t) gives $My' - M \tan(t) y = M 2t \sec(t).$

If $M(t) \tan(t)$ were exactly -M'(t), then we could re-write this as

$$My' + M'y = M 2t \sec(t)$$
$$(My)' = M 2t \sec(t).$$

The solution to $M \tan(t) = -M'$ is $M = e^{(-\int \tan(t) dt)}$. Use this to solve (*). $y = \frac{1}{\cos(t)} \int \cos(t) 2t \sec(t) dt = \sec(t) \int 2t dt = \boxed{(t^2 + C) \sec(t)}.$

(c) Big formula. y' + a(t)y = f(t) is always solved by $y = \left(\int e^{A(t)}f(t) dt\right)e^{-A(t)}$, where A'(t) = a(t). Use $a(t) = -\tan(t)$ and $f(t) = 2t \sec(t)$ in this formula to solve (*).

$$A(t) = -\log(\cos(t)), \text{ so } y = \left(\int e^{\log(\cos(t))} 2t \sec(t) \, \mathrm{d}t\right) e^{-\log(\cos(t))}$$
$$= \left(\int 2t \, \mathrm{d}t\right) \sec(t) = \underbrace{(t^2 + C) \sec(t)}_{\cdot}.$$

197. Solve the ODE

$$t y' + y = t^3$$

using any of the three methods from the previous task.

Standard form: $y' + \frac{1}{t}y = t^2$. General solution: $y = \frac{t^3}{4} + \frac{C}{t}$.

The **Laplace transform** of a function f = f(t) is written $\mathscr{L}[f]$ and is the function $F(s) = \int_0^\infty f(t)e^{-st} dt = \lim_{b \to \infty} \int_0^b f(t)e^{-st} dt.$

Note that $\mathscr{L}[f]$ is a function of "s" while f was a function of "t" (these are the most common letters to use; what is important is that they are not the same variable). Instead of computing integrals every time, we often use these common examples:

	f(t)	t^n	e^{rt}	$\sin(\omega t)$	$\cos(\omega t)$
-	F(t)	$\frac{n!}{s^{n+1}}$	$\frac{1}{s-r}$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{s}{s^2 + \omega^2}$

\$\frac{1}{198}\$. Find $\mathscr{L}[t^2]$ by computing $\int_0^\infty t^2 e^{-st} dt$. This requires integration by parts twice.

Final answer: $\left|\frac{2}{s^3}\right|$

199. For each of the functions below, find $F(s) = \mathscr{L}[f(t)]$ using the table of common Laplace transforms.

(a)
$$f(t) = 1$$
. $\mathscr{L}[t^0] = \frac{0!}{s^{0+1}} = \frac{1}{s}$ or $\mathscr{L}[e^{0t}] = \frac{1}{s-0} = \frac{1}{s}$

(b)
$$f(t) = t$$
. $\frac{1}{s^2}$
(c) $f(t) = t^5$. $\frac{120}{s^6}$
(d) $f(t) = e^t$. $\frac{1}{s-1}$
(e) $f(t) = e^{-t}$. $\frac{1}{s+1}$
(f) $f(t) = \sin(9t)$. $\frac{9}{s^2 + 81}$

200. Give $\mathscr{L}^{-1}\left[\frac{-2}{s^2+4}\right]$, the inverse Laplace transform of $\frac{-2}{s^2+4}$. That is, find a function f(t) for which $F(s) = \mathscr{L}\left[f(t)\right] = \frac{-2}{s^2+4}$. $\sin(-2t) = -\sin(2t)$

201. Solve the equation

$$sY - 4 - 3Y = \frac{1}{s - 5}$$

for Y. (This is only an algebra task. It could have been on List 0.) $Y = \frac{4s - 19}{s^2 - 8s + 15}$

202. Find numbers A and B such that $\frac{5s - 28}{s^2 - 10s + 16} = \frac{A}{s - 2} + \frac{B}{s - 8}.$ $\frac{5s - 28}{(s - 2)(s - 8)} = \frac{A}{s - 2} + \frac{B}{s - 8}$ 5s - 28 = A(s - 8) + B(s - 2)5s - 28 = As - 8A + Bs - 2B5s - 28 = (A + B)s + (-8A - 2B)

Therefore $\begin{cases} A+B=5\\ -8A-2B=-28 \end{cases}$. The solution to this system is A=3, B=2.

203. Solve

$$6F(s) + s \cdot F(s) - 4 = \frac{8}{s}$$

for F(s) and then give the partial fraction decomposition of F(s).

 $F(s) = \frac{-4s+8}{s^2+6s} = \frac{4/3}{s} + \frac{-16/3}{s+6}$

Properties:

•
$$\mathscr{L}[c \cdot f(t) + g(t)] = c \mathscr{L}[f(t)] + \mathscr{L}[g(t)]$$
 for constant c .
• $\mathscr{L}[f(ct)] = \frac{1}{c}F(\frac{s}{c})$ for constant c .
• $\mathscr{L}[e^{kt} \cdot f(t)] = F(s-k)$ for constant k .
• $\mathscr{L}[t \cdot f(t)] = -\frac{dF}{ds}$. This implies $\mathscr{L}[t^n f] = (-1)^n \cdot F^{(n)}(s)$.
• $\mathscr{L}[f'(t)] = s \cdot F(s) - f(0)$. This implies $\mathscr{L}[f''] = s^2 \cdot F(s) - s \cdot f(0) - f'(0)$

204. For the functions

$$\begin{aligned} x(t) &= te^t, \qquad y(t) = e^{5t} \sin(2t), \qquad z(t) = 2t^2 + e^{5t}t^3, \\ \text{find } X(s) &= \mathscr{L}[x(t)] \text{ and } Y(s) = \mathscr{L}[y(t)] \text{ and } Z(s) = \mathscr{L}[z(t)]. \end{aligned}$$

For x, Method 1:
$$\int_0^\infty te^t e^{-st} \, \mathrm{d}t = \int_0^\infty te^{(1-s)t} \, \mathrm{d}t = \boxed{\frac{1}{(s-1)^2}} \text{ using integration} \\ \text{by parts.} \end{aligned}$$

Method 2: Set
$$f(t) = t$$
, so $F(s) = \frac{1}{s^2}$. Then $\mathscr{L}[e^{1t} f(t)] = F(s-1) = \boxed{\frac{1}{(s-1)^2}}$.
Method 3: Set $g(t) = e^t$, so $G(s) = \frac{1}{s-1}$. Then $\mathscr{L}[t g(t)] = -G'(s) = \boxed{\frac{1}{(s-1)^2}}$.
 $Y(s) = \frac{2}{(s-5)^2 + 4}$ $Z(s) = \frac{4}{s^3} + \frac{6}{(s-5)^4}$

205. Find the function from its Laplace transform:

(a)
$$F(s) = \frac{1}{s^2 + 16}$$
. $\frac{1}{4}\sin(4t)$
(b) $F(s) = \frac{9}{s^2 + 3s}$. $F(s) = \frac{9}{s(s+3)} = \frac{3}{s} + \frac{-3}{s+3}$, so $f(t) = 3 - 3e^{-3t}$.
(c) $X(s) = \frac{s - 4}{s^2 - 4}$. $F(s) = \frac{s - 4}{(s+2)(s-2)} = \frac{3/2}{s+2} + \frac{-1/2}{s-2}$, so $f(t) = \frac{3}{2}e^{-2t} - \frac{1}{2}e^{2t}$.
(d) $Y(s) = \frac{7s + 6}{s^2 + 9}$. $F(s) = 7\left(\frac{s}{s^2 + 9}\right) + 2\left(\frac{3}{s^2 + 9}\right)$, so $f(t) = 7\cos(3t) + 2\sin(3t)$.
(e) $F(s) = \frac{5s - 28}{s^2 - 10s + 16}$. $F(s) = \frac{3}{s-2} + \frac{2}{s-8}$ from Task 202, so $f(t) = 3e^{2t} + 2e^{8t}$

206. Re-write $\mathscr{L}[x'] = \mathscr{L}[3x - 7y]$ as an equation with X, Y, s, and the number x(0). Here X = X(s) is the Laplace transform of x = x(t), and similarly $Y = \mathscr{L}[y]$. sX - x(0) = 3X - 7Y

207. Solve the non-homogeneous first-order linear IVP

$$y' - 3y = e^{5t}, \qquad y(0) = 4$$

in four different ways:

- (a) "Variation of parameters"
- (b) "Integrating factor"
- (c) "Big formula"
- (d) "Laplace transformation"

$$\mathcal{L}[y'] - 3\mathcal{L}[y] = \mathcal{L}[e^{5t}]$$
$$(sY - 4) - 3Y = \frac{1}{s - 5}$$

Solving this last equation for Y (see Task 201) gives

$$Y = \frac{4s - 19}{s^2 - 8s + 15}$$

$$y = \mathcal{L}^{-1} \left[\frac{4s - 19}{s^2 - 8s + 15} \right]$$

$$y = \mathcal{L}^{-1} \left[\frac{7/2}{s - 3} + \frac{1/2}{s - 5} \right]$$

$$y = \frac{7}{2} \mathcal{L}^{-1} \left[\frac{1}{s - 3} \right] + \frac{1}{2} \mathcal{L}^{-1} \left[\frac{1}{s - 5} \right]$$

$$y = \frac{7}{2} e^{3t} + \frac{1}{2} e^{5t}$$

208. Solve the IVP

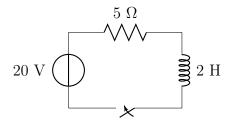
 \mathbf{SO}

$$x' + 6x = 8, \qquad x(0) = -4$$

using any of the four methods from the previous task. Laplace: $(sX - 4) + 6X = \frac{8}{s}$. From **Task 203**, $X = \frac{-4s + 8}{s^2 + 6s} = \frac{4/3}{s} + \frac{-16/3}{s + 6}$

$$x = \frac{4}{3} - \frac{16}{3}e^{-6t}.$$

209. RL circuit (DC): When the switch in the circuit



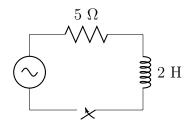
is closed, the current i = i(t) flowing through the circuit satisfies

$$2\frac{\mathrm{d}i}{\mathrm{d}t} + 5i = 20, \quad i(0) = 0.$$

Solve this IVP.

Note: this task is **not** starred. I will never require you to analyze a circuit in this class, but I do expect you to be able to solve 2y' + 5y = 20, y(0) = 0, which is exactly this task using different letters. $i(t) = 4 - 4e^{-2.5t}$

210. *RL circuit (AC):* If the direct-current battery in Task 209 is replaced by an alternating current source $\mathcal{E} = 20\sin(5t)$,



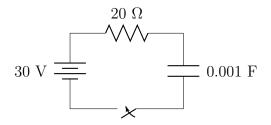
the differential equation becomes

$$2\frac{\mathrm{d}i}{\mathrm{d}t} + 5i = 20\sin(5t), \quad i(0) = 0.$$

Solve this IVP.

Int. factor:
$$M = e^{\int \frac{3}{2} dt} = e^{2.5t}$$
, and (see **Task 187c**)
 $\int Mf \, dt = 20 \int e^{2.5t} \sin(5t) \, dt = 20 \left(\frac{2}{25}e^{2.5t} \sin(5t) - \frac{4}{25}e^{2.5t} \cos(5t)\right)$
Laplace: $5I - 2sI = 20(\frac{5}{s^2 + 25})$, so
 $I = \frac{100}{(2s+5)(s^2+25)} = \frac{16}{10s+25} + \frac{4}{s^2+25} - \frac{8s}{5s^2+125}$
Either way, $i = \frac{8}{5}e^{-2.5t} + \frac{4}{5}\sin(5t) - \frac{8}{5}\cos(5t)$

211. RC circuit, charging: When the switch in the circuit



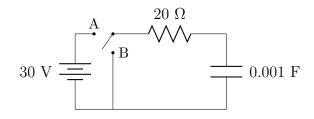
is closed, the charge q = q(t) in the capacitor satisfies

$$20\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{0.001}q = 30, \quad q(0) = 0.$$

Solve the IVP, and then determine $\lim_{t\to\infty} q(t)$.

$$q = 0.03(1 - e^{-50t})$$
, so as $t \to \infty$ we get $q \to 0.03$, or 30 mC.
Note: $-|||$ and $--$ and $-(+1)$ are basically all the same.

212. RC circuit, discharging: When the switch in the circuit



is at position A, the circuit behaves like the one in Task 211. When the switch moves to position B at t = 0, the capacitor starts discharging according to

$$20\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{0.001}q = 0, \quad q(0) = 0.03$$

Solve this IVP. $q = 0.03e^{-50t}$

- $\gtrsim 213$. For each of the following, your formula for q(t) will have some or all of R, C, \mathcal{E}, Q_0 as constants.
 - (a) Charging from zero: Solve $q' + \frac{1}{RC}q = \frac{\mathcal{E}}{R}$, q(0) = 0. $q(t) = C\mathcal{E}(1 e^{-t/(RC)})$
 - (b) Discharging: Solve $q' + \frac{1}{RC}q = 0$, $q(0) = Q_0$. $q(t) = Q_0 e^{-t/(RC)}$
 - (c) Charging from a non-zero start: Solve $q' + \frac{1}{RC}q = \frac{\mathcal{E}}{R}$, $q(0) = Q_0$. $q(t) = C\mathcal{E} + (Q_0 - C\mathcal{E})e^{-t/(RC)}$
 - (d) Compare part (c) to Task 182, Newton's Law of Cooling. They are basically the same, just with different names for the constants!

function
$$(t) = a + be^{-ct}$$