List 8

First-order linear ODEs
187. Evaluate the following integrals using integration by parts:
(a) $\int x \sin (x) \mathrm{d} x$
(b) $\int 3 x \ln (x) \mathrm{d} x$
(c) $\int e^{5 t / 2} \sin (5 t) \mathrm{d} t$

An order n linear ODE for y can be written in the form

$$
a_{n} y^{(n)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f
$$

where $a_{i}=a_{i}(t)$ and $f=f(t)$ are functions. The equation is called homogeneous if $f(t)=0$ and non-homogeneous otherwise. If every $a_{i}(t)$ is a constant function, the equation has constant coefficients (note $f(t)$ can still be non-constant).
188. For each ODE below, state whether it is linear or not:
(a) $y \cdot y^{\prime}=5 t+2$
(e) $\frac{y^{\prime \prime}}{t^{2}}=3 e^{t}+y$
(b) $y^{\prime}+y=t^{2}$
(f) $y=y^{\prime}-e^{t}$
(c) $y^{\prime}+y^{2}=t^{2}$
(g) $y^{\prime}=e^{y}+t$
189. What is the order of the linear $\operatorname{ODE} t^{4} y^{\prime \prime}+t^{3} y^{\prime}-y=t^{5}$?
190. The following ODEs are linear. Label each as homogeneous or non-homogeneous.
(a) $y^{\prime}+\left(3 t^{2}-6 t+14\right) y=0$
(b) $2 x^{\prime}+3 x=4$
(c) $x^{\prime}+(3 t-1) x=t^{2} x$
(d) $y^{\prime \prime}=9 y$
(e) $y^{\prime \prime}+9 y^{\prime}+t=0$
191. "Every homogeneous first-order linear ODE is autonomous." Either use formulas to explain why this is true or give an example that shows this claim is false.
192. "Every homogeneous first-order linear ODE is separable." Either use formulas to explain why this is true or give an example that shows this claim is false.
The homogeneous first-order linear ODE $y^{\prime}=-a(x) \cdot y$ has general solution

$$
y=C e^{-A(x)},
$$

where $A(x)$ is any antiderivative of $a(x)$, meaning $A^{\prime}(x)=a(x)$.
For the non-homogeneous first-order linear ODE $y^{\prime}+a(x) \cdot y=f(x)$, the general solution is

$$
y=\left(\int e^{A(x)} \cdot f(x) \mathrm{d} x\right) e^{-A(x)}
$$

This can also be written as $y=\frac{1}{M(x)} \int M(x) f(x) \mathrm{d} x$, where $M(x)=e^{A(x)}$ is called the "integrating factor".
193. Solve the following differential equations:
(a) $y-2 y=7$.
(b) $y=y+2 x-3$.
(c) $y+(\sin t) y=e^{\cos t}$.
(d) $y^{\prime}-\left(\frac{3 x^{2}-2 x+3}{x^{2}+1}\right) y-\frac{e^{3 x}}{x^{2}+1}=0$.
194. Solve the following initial value problems:
(a) $y^{\prime}=y+2 x-3, \quad y(0)=9$.
(b) $y^{\prime}=\frac{-x y}{x+1}, \quad y(1)=3$.
(c) $\frac{y^{\prime}}{\cos (t)}+y \tan (t)=\frac{e^{\cos t}}{\cos (t)}, \quad y(0)=e$.
(d) $x^{2} y^{\prime}=y^{2}, \quad y(2)=4$.
195. Solve the initial value problem

$$
2 y^{\prime}-y=4 \sin (3 t), \quad y(0)=y_{0}
$$

and then answer the following questions:
(a) For which values of y_{0} does $y(t)$ go towards $+\infty$ as $t \rightarrow+\infty$?
(b) For which values of y_{0} does $y(t)$ go towards $-\infty$ as $t \rightarrow+\infty$?
(c) For which values of y_{0} does $y(t)$ remain bounded as $t \rightarrow+\infty$?
196. Solve the non-homogeneous first-order linear ODE

$$
\begin{equation*}
y^{\prime}-\tan (t) y=2 t \sec (t) \tag{*}
\end{equation*}
$$

in three different ways:
(a) "Variation of parameters." The solution to the homogeneous equation

$$
y^{\prime}-\tan (t) y=0
$$

is $y=C \sec (t)$ for a constant number C. Assume that the solution to $(*)$ is of the form

$$
y=g(t) \cdot \sec (t)
$$

for some function $g(t)$, and determine what $g(t)$ must be.
(b) "Integrating factor." Multiplying (*) by any function $M(t)$ gives

$$
M y^{\prime}-M \tan (t) y=M 2 t \sec (t)
$$

If $M(t) \tan (t)$ were exactly $-M^{\prime}(t)$, then we could re-write this as

$$
\begin{aligned}
M y^{\prime}+M^{\prime} y & =M 2 t \sec (t) \\
(M y)^{\prime} & =M 2 t \sec (t)
\end{aligned}
$$

The solution to $M \tan (t)=-M^{\prime}$ is $M=e^{\left(-\int \tan (t) \mathrm{d} t\right)}$. Use this to solve $(*)$.
(c) Direct formula. $y^{\prime}+a(t) y=f(t)$ is always solved by $y=\left(\int e^{A(t)} f(t) \mathrm{d} t\right) e^{-A(t)}$, where $A^{\prime}(t)=a(t)$. Use $a(t)=-\tan (t)$ and $f(t)=2 t \sec (t)$ in this formula to solve ($*$).
197. Solve the ODE

$$
t y^{\prime}+y=t^{3}
$$

using any of the three methods from the previous task.
The Laplace transform of a function $f=f(t)$ is written $\mathscr{L}[f]$ and is the function

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t=\lim _{b \rightarrow \infty} \int_{0}^{b} f(t) e^{-s t} \mathrm{~d} t .
$$

Note that $\mathscr{L}[f]$ is a function of " s " while f was a function of " t " (these are the most common letters to use; what is important is that they are not the same variable). Instead of computing integrals every time, we often use these common examples:

$f(t)$	t^{n}	$e^{r t}$	$\sin (\omega t)$	$\cos (\omega t)$
$F(t)$	$\frac{n!}{s^{n+1}}$	$\frac{1}{s-r}$	$\frac{\omega}{s^{2}+\omega^{2}}$	$\frac{s}{s^{2}+\omega^{2}}$

~ 198. Find $\mathscr{L}\left[t^{2}\right]$ by computing $\int_{0}^{\infty} t^{2} e^{-s t} \mathrm{~d} t$.
199. For each of the functions below, find $F(s)=\mathscr{L}[f(t)]$ using the table of common Laplace transforms.
(a) $f(t)=1$.
(c) $f(t)=t^{5}$.
(e) $f(t)=e^{-t}$.
(b) $f(t)=t$.
(d) $f(t)=e^{t}$.
(f) $f(t)=\sin (9 t)$.
200. Give $\mathscr{L}^{-1}\left[\frac{-2}{s^{2}+4}\right]$, the inverse Laplace transform of $\frac{-2}{s^{2}+4}$. That is, find a function $f(t)$ for which $F(s)=\mathscr{L}[f(t)]=\frac{-2}{s^{2}+4}$.
201. Solve the equation

$$
s Y-4-3 Y=\frac{1}{s-5}
$$

for Y. (This is only an algebra task. It could have been on List 0 .)
202. Find numbers A and B such that $\frac{5 s-28}{s^{2}-10 s+16}=\frac{A}{s-2}+\frac{B}{s-8}$.
203. Solve

$$
6 F(s)+s \cdot F(s)-4=\frac{8}{s}
$$

for $F(s)$ and then give the partial fraction decomposition of $F(s)$.

Properties:

- $\mathscr{L}[c \cdot f(t)+g(t)]=c \mathscr{L}[f(t)]+\mathscr{L}[g(t)]$ for constant c.
- $\mathscr{L}[f(c t)]=\frac{1}{c} F\left(\frac{s}{c}\right)$ for constant c.
- $\mathscr{L}\left[e^{k t} \cdot f(t)\right]=F(s-k)$ for constant k.
- $\mathscr{L}[t \cdot f(t)]=-\frac{\mathrm{d} F}{\mathrm{~d} s}$. This implies $\mathscr{L}\left[t^{n} f\right]=(-1)^{n} \cdot F^{(n)}(s)$.
- $\mathscr{L}\left[f^{\prime}(t)\right]=s \cdot F(s)-f(0)$. This implies $\mathscr{L}\left[f^{\prime \prime}\right]=s^{2} \cdot F(s)-s \cdot f(0)-f^{\prime}(0)$.

204. For the functions

$$
x(t)=t e^{t}, \quad y(t)=e^{5 t} \sin (2 t), \quad z(t)=2 t^{2}+e^{5 t} t^{3},
$$

find $X(s)=\mathscr{L}[x(t)]$ and $Y(s)=\mathscr{L}[y(t)]$ and $Z(s)=\mathscr{L}[z(t)]$.
205. Find the function from its Laplace transform:
(a) $F(s)=\frac{1}{s^{2}+16}$.
(b) $F(s)=\frac{9}{s^{2}+3 s}$. Hint: first re-write F as $\frac{?}{s}+\frac{?}{s+3}$.
(c) $X(s)=\frac{s-4}{s^{2}-4}$.
(d) $Y(s)=\frac{7 s+6}{s^{2}+9}$.
(e) $F(s)=\frac{5 s-28}{s^{2}-10 s+16}$.
206. Re-write $\mathscr{L}\left[x^{\prime}\right]=\mathscr{L}[3 x-7 y]$ as an equation with X, Y, s, and the number $x(0)$.
Here $X=X(s)$ is the Laplace transform of $x=x(t)$, and similarly $Y=\mathscr{L}[y]$.
207. Solve the non-homogeneous first-order linear IVP

$$
y^{\prime}-3 y=e^{5 t}, \quad y(0)=4
$$

in four different ways:
(a) "Variation of parameters"
(b) "Integrating factor"
(c) "Direct formula"
(d) "Laplace transformation"
208. Solve the IVP

$$
x^{\prime}+6 x=8, \quad x(0)=-4
$$

using any of the four methods from the previous task.
209. RL circuit ($D C$): When the switch in the circuit

is closed, the current $i=i(t)$ flowing through the circuit satisfies

$$
2 \frac{\mathrm{~d} i}{\mathrm{~d} t}+5 i=20, \quad i(0)=0 .
$$

Solve this IVP.
Note: this task is not starred. I will never require you to analyze a circuit in this class, but I do expect you to be able to solve $2 y^{\prime}+5 y=20, y(0)=0$, which is exactly this task using different letters.
210. RL circuit ($A C$): If the direct-current battery in Task 209 is replaced by an alternating current source $\mathcal{E}=20 \sin (5 t)$,

the differential equation becomes

$$
2 \frac{\mathrm{~d} i}{\mathrm{~d} t}+5 i=20 \sin (5 t), \quad i(0)=0 .
$$

Solve this IVP.
211. RC circuit, charging: When the switch in the circuit

is closed, the charge $q=q(t)$ in the capacitor satisfies

$$
20 \frac{\mathrm{~d} q}{\mathrm{~d} t}+\frac{1}{0.001} q=30, \quad q(0)=0
$$

Solve the IVP, and then determine $\lim _{t \rightarrow \infty} q(t)$.
Note: $-|| |$ and \because and -+1 are basically all the same.
212. $R C$ circuit, discharging: When the switch in the circuit

is at position A , the circuit behaves like the one in Task 211. When the switch moves to position B at $t=0$, the capacitor starts discharging according to

$$
20 \frac{\mathrm{~d} q}{\mathrm{~d} t}+\frac{1}{0.001} q=0, \quad q(0)=0.03
$$

Solve this IVP.
213. For each of the following, your formula for $q(t)$ will have some or all of R, C, \mathcal{E}, Q_{0} as constants.
(a) Charging from zero: Solve $q^{\prime}+\frac{1}{R C} q=\frac{\mathcal{E}}{R}, \quad q(0)=0$.
(b) Discharging: Solve $q^{\prime}+\frac{1}{R C} q=0, \quad q(0)=Q_{0}$.
(c) Charging from a non-zero start: Solve $q^{\prime}+\frac{1}{R C} q=\frac{\mathcal{E}}{R}, \quad q(0)=Q_{0}$.
(d) Compare part (c) to Task 60.

