
Analysis 2, Summer 2024
List 9

Higher-order linear ODEs

214. Solve the ODE t2y′′ + 3ty ′ + y = 0.
Note: This task is starred. I would not ask you to solve this ODE on any quiz
or exam because it is second-order but does not have constant coefficients.
It is not required for this course, but if you are curious here is a method that
can solve this ODE.
Substitute z = t · y, so y = z

t
= t−1 · z. Then

t2y′′ + 3ty ′ + y = t2(t−1 · z) ′′ + 3t(t−1 · z) ′ + (t−1 · z)
= t2(t−1z ′ − t−2z) ′ + 3t(t−1z ′ − t−2z) + t−1z

= t2((t−1z ′′ − t−2z ′)− (t−2z ′ − 2t−3z)) + 3z ′ − 3t−1z + t−1z

= 0(tz ′′ − z ′ − z ′ + 2t−1z) + 3z ′ − 2t−1z

= tz ′′ + z ′

So the ODE becomes tz ′′ + z ′ = 0. Substituting u = z ′, so u ′ = z ′′, this is

tz ′′ + z ′ = 0

tu ′ + u = 0 (separable)

t
du

dt
= −u∫

1

u
du =

∫
−1

t
dt

ln(u) = − ln(t) + C

u = Ce− ln(t) =
C

t

Then z ′ =
C1

t
means z =

∫
C1

t
dt = C1 ln(t) + C2. Finally, y =

z

t
, so

y =
C1

t
+

C2 ln t

t

215. The second-order ODE
t2y′′ + 3ty ′ + y = 0

has general solution
y =

C1

t
+

C2 ln t

t
.

(a) Use this general solution to find a formula for y ′. y ′ = −C1

t2
+

C2

t2
− C2 ln(t)

t2

(b) Using the formulas for y and y′, give the solution to the IVP

t2y′′ + 3ty ′ + y = 0, y(1) = 2, y ′(1) = 5.



Note: This is the same ODE has Task 214, but this task is not starred.
From y(1) = 2 we get C1

1
+ 0 = 2, so C1 = 2. Using y ′ from part (a), we have

y′(1) = −C1+C2, so the second initial condition gives −(2)+C2 = 5, or C2 = 7.

The solution to the IVP is therefore y =
2

t
+

7 ln t

t
.

216. (a) Calculate the integral
∫

3x2dx. x3 + C

(b) Calculate the integral
∫

(x3+k)dx. (Your answer will include k.) 1
4
x4 + kx+ C

217. Solve y′′ = 3x2 by first finding y ′ =

∫
(y′′)dx = x3 + C1 and then finding

y =

∫
(y ′)dx =

∫
(x3 + C1)dx = 1

4
x4 + C1x+ C2

218. Classify each linear ODEs below as “homogeneous linear” or “non-homogeneous
linear” or “not linear”.
(a) y′′ − 9y ′ + 2y = 0. homogeneous linear

(b) y′′ + 9y ′ + 2y = t3. non-homogeneous linear

(c) y′′′ − y′′ − y ′ − y = 0. homogeneous linear

(d) x ′′ + 2x = 9x ′. homogeneous linear

(e) y′′ = 5t. non-hom. linear because y′′ + (0)y ′ + (0)y = (5t).
(f) y′′ = 5y. hom. linear because y′′ + (0)y ′ + (−5)y = 0.
(g) x ′′ = 5x ′. hom. linear because x ′′ + (−1)x ′ + (0)x = 0.
(h) y′′ = 5t2. non-hom. linear because y′′ + (0)y ′ + (0)y = (5y2).
(i) y′′ = 5x2. non-hom. linear because y′′ + (0)y ′ + (0)y = (5x2).
(j) y′′ = 5y2. not linear
(k) y′′ = 5yt. hom. linear because y′′ + (0)y ′ + (−5t)y = 0.

A collection of functions y1(t), y2(t), ..., yk(t) are called a fundamental set of
solutions for a homogeneous ODE if the general solution to the ODE is

y = C1 · y1(t) + C2 · y2(t) + · · ·+ Ckyk(t).

We can also1 say that the functions are “fundamental solutions” to the ODE.

219. The functions t10 and 1

t
form a fundamental set for

y′′ − 8

t
y ′ − 10

t2
y = 0.

Using this, give the general solution to that ODE. y = C1t
10 +

C2

t
1Using linear algebra vocabulary that is not required for this class, the fundamental set is

a “basis” for the solution space, the fundamental functions “span” the solutions space, and the
general solution is the set of all “linear combinations” of the fundamental solutions.



220. Solve the ODE y′′ − 8

t
y ′ − 10

t2
y = 0.

Note: This task is starred. I would not ask you to solve this ODE on any quiz
or exam because it is second-order but does not have constant coefficients. (But
Task 219, with fundamental solution provided, is not starred.)

For a homogeneous linear ODE with constant coefficients

any
(n) + · · ·+ a2y

′′ + a1y
′ + a0y = 0,

the characteristic polynomial of this ODE is

anr
n + · · ·+ a2r

2 + a1r + a0.

221. For each of the following homogeneous linear ODEs with constant coefficients,
write the characteristic polynomial and find its (real or complex) roots.

(a) y′′ + y ′ − 2y = 0. r2 + r − 2 has roots 1 and − 2 .

(b) 2y′′ + y ′ − 21y = 0. 2r2 + r − 21 has roots r = 3, r = −7
2

(c) y′′′ = −5y′′ − y ′ + 5y. r3 − 5r2 + r − 5 has roots 5, i − i .

(d) y(4)−8y′′′+16y′′−25y = 0. x4 − 8x3 + 16x2 − 25 has roots 5, −1, 2 + i, 2− i .

(e) y(4) − 4y′′′ + 5y′′ = 0. r4 − 4r3 + 5r2 has roots 0 (twice), 2 + i , and
2− i .

(f) x ′′ − 10x ′ + 9x = 0. r2 − 10r + 9 has roots 1 and 9

If the set of fundamental solutions for a homogeneous linear ODE with constant
coefficients can be found using the roots of its characteristic polynomial:

• for each root a± bi with multiplicity m, all of the functions tkeat sin(bt) and
tkeat cos(bt) with k = 0, 1, ...,m− 1 are fundamental solutions.

That one rule completely describes the fundamental set, but in practice the follo-
wing rules are easier to use for second-order ODEs:

• if r1 and r2 distinct real roots, then use er1t and er2t.
• if r is a repeated real root, then use ert and t ert.
• if λ+ µi is a complex root, then use eλt sin(µt) and eλt cos(µt).

222. Give a set of fundamental solutions for the ODE
y′′ + 3y ′ − 18y = 0.

e3t and e−6t Answers such as “1
5
e−6t and −100e3t” are also correct.

223. Describe all possible solutions to the homogeneous ODE
y′′ − 8y ′ + 25y = 0.

Polynomial λ2 − 8λ+25 has roots 4± 3i, so y = C1e
4t cos(3t) + C2e

4t sin(3t) .

224. Find the general solution to the following homogeneous linear ODEs:



(a) y′′ + y′ − 2y = 0. Char. polyn. f(r) = r2 + r− 2 has roots 1 and −2, so the
general solution is C1e

t + C2e
−2t .

(b) y′′ + 2y ′ + y = 0. Char. polyn. f(r) = r2 + 2r+ 1 has repeated root −1, so
the general solution is C1e

−t + C2te
−t .

(c) y′′′ + 3y′′ − 4y ′ = 0. Char. polyn. f(r) = r3 + 3r2 − 4r has roots 0, 1, and
−4, so the general solution is C1e

0t+C2e
1t+C3e

−4t = C1 + C2e
t + C3e

−4t .
(d) y′′′ + y′′ + y ′ + y = 0. Char. polyn. f(r) = r3 + r2 + r+ 1 has roots −1 and

0+ i and 0− i, so the general solution is C1e
−t+C2e

0t sin(t)+C3e
0t cos(t) =

C1e
−t + C2 sin(t) + C3 cos(t) .

(e) y(4) − 5y′′ + 4y = 0. f(r) = r4 − 5r2 + 4 has roots 1, −1, 2, −2, so the
general solution is C1e

t + C2e
−t + C3e

2t + C4e
−2t .

(f) y(4)−8y′′′+16y′′−25y = 0. f(r) = r4−8r3+16r2−25 has roots 5, −1, 2+

i, 2− i, so y = C1e
5t + C2e

−t + C3e
2t sin(t) + C4e

2t cos(t) .

(g) y(4) +8y′′ +16y = 0. f(r) = r4 +8r2 +16 has repeated roots 2i (twice) and
−2i (twice), so y = C1 cos(2t) + C2 t cos(2t) + C3 sin(2t) + C4 t sin(2t) .

(h) y(5) + y′′′ = 0. y = C1 + C2t+ C3t
2 + C4 sin(t) + C5 cos(t)

225. Solve the IVP
y′′ + 2y ′ + y = 0, y(0) = 7, y ′(0) = 5.

From 224(b), y = C1e
−t + C2te

−t. Thus y(0) = C1 = 7 and since

y ′(t) =
(
C1e

−t + C2te
−t
)′
= −7e−t − C2te

−t + C2e
−t

we have y ′(0) = −7− 0 + C2 = 5, so C2 = 12. Thus y = 7e−t + 12te−t .

226. Using the fact that r3 − r2 + r − 1 = (r − 1)(r2 + 1),

(a) Solve the ODE y′′′ − y′′ + y ′ − y = 0. y = C1e
t + C2 cos(t) + C3 sin(t)

(b) Solve the IVP y′′′ − y′′ + y ′ − y = 0, y(0) = 5, y ′(0) = −3, y′′(0) = 1.

y = 3et + 2 cos(t)− 6 sin(t)

227. Give the homogeneous linear ODE with constant coefficients for which

y = C1e
−t + C2e

t + C3te
t + C4t

2et + C5e
4t sin(3t) + C6e

4t cos(3t)

is the general solution.
(r+1)(r−1)3(r−(4+3i))(r−(4−3i)) = r6−10r5+41r4−48r3−17r2+58r−25,
so the ODE is y(6) − 10y(5) + 41y(4) − 48y′′′ − 17y′′ + 58y ′ − 25y = 0 .

228. (a) Find the unique value of A for which y = Ae−2t is a solution to

y′′ − 8y ′ + 25y = 50e−2t.



(Ae−2t) ′′ − 8(Ae−2t) ′ + 25(Ae−2t) = 50e−2t

(4Ae−2t)− 8(−2Ae−2t) + 25(Ae−2t) = 50e−2t

4Ae−2t + 16Ae−2t + 25Ae−2t = 50e−2t

4A+ 16A+ 25A = 50

A =
50

45
=

10

9

(b) Give one particular solution to the ODE. y =
10

9
e−2t

Given one particular solution y = yNH(t) to a non-homogeneous linear ODE, the
general solution will be

y = yNH + yHom,

where yHom solves the corresponding homogeneous ODE.

The format of yNH depends on the non-homogeneous term f(t). If λ+ ωi is not a
root of the characteristic polynomial, then

f = aeλt ⇒ yNH = Aeλt

f = a sin(ωt) ⇒ yNH = A sin(ωt) +B cos(ωt)
f = a cos(ωt) ⇒ yNH = A sin(ωt) +B cos(ωt)
f = atk ⇒ yNH = Atk + · · ·+ Y t+ Z

where A,B, ... are unknown numbers. If f is a sum or product of terms on the
left, then yNH should be a sum or product of formulas on the right.

If λ+ωi is a root of the characteristic polynomial (in this case we say the ODE has
resonance) with multiplicity m, then multiply the suggested yNH above by tm.

229. Using Task 228(b), describe all possible solutions to the ODE
y′′ − 8y ′ + 25y = 50e−2t.

This is exactly the answer to Task 223 plus the answer to Task 228(b).

That is, y =
10

9
e−2t + C1e

4t cos(3t) + C2e
4t sin(3t) .

230. Write the form (use capital letters A,B, ... for any unknown coefficients, and
assume there is no resonance) of the non-homogeneous part of the solution to
the constant-coefficient linear ODE aky

(k) + · · ·+ a0y = f(t) if...

(a) f(t) = e4t. Ae4t

(b) f(t) = cos(2t). A cos(2t) +B sin(2t)

(c) f(t) = cos(2t) + sin(2t). A cos(2t) +B sin(2t) (same as (b))

(d) f(t) = cos(2t) + sin(3t). A cos(2t) +B sin(2t) + C cos(3t) +D sin(3t)

(e) f(t) = e9t + 7. Ae9t + (Bt+ C)



(f) f(t) = t4 + sin(t). (At4 +Bt3 + Ct2 +Dt+ E) + F cos(t) +G sin(t)

(g) f(t) = t3 sin(6t). (A+Bt+ Ct2 +Dt3) sin(6t) + (E + Ft+Gt2 +Ht3) cos(6t)

or A sin(6t)+Bt sin(6t)+Ct2 sin(6t+Dt3 sin(6t)+E cos(6t)+Ft cos(6t)+
Gt2 cos(6t) +Ht3 cos(6t)

231. Give the form of yNH for

(a) y′′ − 2y′ − 24y = e4t. Ae4t (See Task 230(a).)

(b) y′′ + 2y′ − 24y = e4t. A t e4t where the extra t is because of resonance.
(This is not the same as the answer to part (a) because of resonance.)

(c) y′′ − 8y′ + 16y = e4t. A t2 e4t (Double-resonance!)

232. Solve the non-homogeneous linear ODE

y′′ − 2y ′ − 2y = 26e5t.

Corresponding homogeneous has solutions e(1+
√
3)t and e(1−

√
3)t because f(r) =

r2 − 2r − 2 has roots 1±
√
3. Because g(t) = 26e5t, the non-homogeneous part

has the form
yNH = Ae5t.

Using the ODE, we have

(Ae5t) ′′ − 2(Ae5t) ′ − 2(Ae5t) = 26e5t

(25Ae5t)− 2(5Ae5t)− 2(Ae5t) = 26e5t

25Ae5t − 10Ae5t − 2Ae5t = 26e5t

13Ae5t = 26e5t

13A = 26

A = 2

Therefore yNH = 2e5t and y = C1e
(1+

√
3)t + C2e

(1−
√
3)t + 2et .

233. Solve the IVP
1
2
y′′ − 5y ′ + 8y = 0, y(0) = 5, y ′(0) = 22

(a) by first solving the ODE and then finding C1, C2. General solution: y =
C1e

2t +C2e
8t. From y(0) = 5 we get 5 = C1 +C2. To use the second IC we

first need to take a derivative:

y ′ =
(
C1e

2t + C2e
8t
)′
= 2C1e

2t + 8C2e
8t.

So y ′(0) = 22 means 2C1 + 8C2 = 22. The system{
C1 + C2 = 5
2C1 + 8C2= 22

has solution (C1, C2) = (3, 2), so the particular solution is y(t) = 3e2t + 2e8t .



(b) by using Laplace transforms. For this you will need to use the fact that

L
[
y′′
]
= s2 · Y − s · y(0)− y ′(0).

This is a consequence of the rule L
[
f ′] = s · F − f(0), which we have seen

before, with f = y′. Laplace transforms turn this into Y (s) =
5s− 28

s2 − 10s+ 16
,

which by Tasks 202 or 205(e) gives y(t) = 3e2t + 2e8t .

234. Solve the IVP

x ′′ − x ′ = (1 + t) sin t, x(0) = 0, x ′(0) = 1.

Homogeneous solutions e0t = 1 and et.
Particular solution xNH = −3

2
sin(t)− 1

2
t sin(t) + 1

2
t cos(t). General solution

x = C1 + C2e
t − 3

2
sin(t)− 1

2
t sin(t) + 1

2
t cos(t).

See Task 9: initial conditions lead to C1 = −2 and C2 = 2, so

x = −2 + 2et + −3
2
sin(t)− 1

2
t sin(t) + 1

2
t cos(t) .

Alternatively, Laplace gives s2X(s)− sX(s)− 1 =
2s

(s2 + 1)2
+

1

s2 + 1
and then

X =
s4 + 3s2 + 2s+ 2

(s− 1)s (s2 + 1)2
=

−s− 1

(s2 + 1)2
− 1

s2 + 1
+

2

s− 1
− 2

s
,

so x = −2 + 2et + −3
2
sin(t)− 1

2
t sin(t) + 1

2
t cos(t) .

235. Solve the following higher-order ODEs (they all have constant coefficients):

(a) y′′ − 4y ′ − 60y = 0 y = C1e
10t + C2e

6t

(b) y′′ − 10y ′ + 23y = 0 y = C1e
(5−

√
2)t + C2e

(5+
√
2)t

(c) y′′ + 8y ′ + 17y = 0 y = C1e
−4t sin(t) + C2e

−4t cos(t)

(d) x′′ + 7x′ + 10x = 0 x = C1e
5t + C2e

−2t

(e) y′′ − y ′ − 12y = 0 y = C1e
−3t + C2e

4t

(f) y′′ − y ′ − 12y = 13e10t

yHom is from part (e), and yNH = Ae10t for some A.
Using (Ae10t)′′ − (Ae10t)′ − 12(Ae10t) = 13e10t we get A = 1

6
,

so y = C1e
−3t + C2e

4t + 1
6
e10t

(g) x′′ − 4x′ + 13x = 0 x = C1e
2t sin(3t) + C2e

2t cos(3t)

(h) x′′ + 3x′ + 2x = 4t2 − 11 x = C1e
−2t + C2e

−t + 2t2 − 6t+
3

2

(i) y′′ − 2y ′ + 82y = 0 y = C1e
t sin(9t) + C2e

t cos(9t)



(j) y′′ − y ′ = 8 sin(t) y = 4 cos(t)− 4 sin(t) + C1e
t + C2

(k) y′′′ − 6y′′ + 5y ′ = 0 y = C1 + C2e
t + C3e

5t

236. RLC circuit: The current i(t) in the circuit

satisfies the second-order differential equation
d2i

dt2
+

R

L

di

dt
+

1

LC
i = 0.

Using R = 6 Ω, L = 2 H, and C = 0.04 F, solve the IVP

i ′′ + 3i ′ +
25

2
i = 0, i(0) =

1

10
ampere, i ′(0) = 0 ampere

second .

i=
1

10
e−3t/2 cos(

√
41
2
t) +

3

10
√
41

e−3t/2 sin(
√
41
2
t)

= 0.1 e−1.5t cos(3.2t) + 0.047 e−1.5t sin(3.2t)

237. Solve the IVP y′′ − 9y = −32 t et, y(0) = 5, y ′(0) = 1
2
.

Method 1: Characteristic polynomials. The homogeneous ODE y′′ − 9y = 0 has
char. polyn. r2 − 9, which has roots ±3, so yHom = C1e

3t + C2e
−3t. The non-

homogeneous term is a product of a polynomial and an exponential, so yNH must
also be the product of a polynomial (same degree as “t”, so degree 1, so some
At+B) and an exponential (same exponent as et).

yNH = (At+B)et for some A,B.

We don’t need Cet because (At+B)et = Atet+Bet already includes multiplying
et by a number.

y ′′
NH − 9yNH = −32 t et

(Atet +Bet) ′′ − 9(Atet +Bet) = −32 t et

(2Aet + Atet +Bet) + (−9Atet − 9Bet) = −32 t et

2AEt − 8AtEt − 8BEt = −32 t et

(−8A)t+ (2A− 8B) = −32 t

Therefore
{

−8A = −32
2A− 8B = 0

and so A = 4, B = 1, and yNH = (4t+ 1)et. The

general solution is y = C1e
3t + C2e

−3t + 4tet + et .

Before we can use the initial condition y′(0) = 1
2
, we will need

y′ =
(
C1e

3t + C2e
−3t + 4tet + et

)′
= 3C1e

3t − 3C2e
−3t + (4tet + 4et) + et

= 3C1e
3t − 3C2e

−3t + 4tet + 5et



The initial conditions give us the system
y(0) = C1 + C2 + 1 = 5
y′(0) = 3C1 − 3c2 + 5 = 1

2

→
{

C1 + C2 = 4
3C1 − 3C2 =

−9
2

This can be solved many ways. Using Cramer’s Rule,

C1 =
det

[
4 1
−9
2

−3

]
det [ 1 1

3 −3 ]
=

−15
2

−6
=

5

4
and C2 =

det
[
1 4

3
−9
2

]
det [ 1 1

3 −3 ]
=

−33
2

−6
=

11

4
.

The final answer is therefore y =
5

4
e3t +

11

4
e−3t + 4tet + et .

Method 2: Laplace transforms. We need L
[
t et

]
. Using L

[
etf

]
= F (s − 1)

with f(t) = t, we get F (s) = L
[
t
]
= 1

s2
and so F (s−1) = 1

(s−1)2
. Alternatively,

using L
[
t f

]
= −F ′ with f = et, we get F (s) = L

[
et
]
= 1

s−1
and then

−F ′ = −( −1
(s−1)2

) = 1
(s−1)2

. Taking the Laplace transform of the entire IVP and
then solving for Y , we find

L
[
y′′
]
− 9L

[
y
]
= −32L

[
t et

]
s2Y − sy(0)− y ′(0)− 9Y = −32 · 1

(s− 1)2

s2Y − 5s− 1
2
− 9Y =

−32

(s− 1)2

(s2 − 9)Y =
−32

(s− 1)2
+ 5s+

1

2

(s2 − 9)Y =
10s3 − 19s2 + 8s− 63

2(s− 1)2

Y =
10s3 − 19s2 + 8s− 63

2(s− 3)(s+ 3)(s− 1)2
.

The partial fraction decomposition for Y is

Y =
A

s− 3
+

B

s+ 3
+

C

(s− 1)
+

D

(s− 1)2

for some A,B,C,D. We could combine the last two terms into Cs+E
(s−1)2

, but (1) this
would not match the official definition of partial fractions and (2) we would have
to split it apart later anyway when doing inverse Laplace transforms.
Multiplying everything by 2(s− 3)(s+ 3)(s− 1)2 gives

10s3 − 19s2 + 8s− 63 = 2A(s+ 3)(s− 1)2 + 2B(s− 3)(s− 1)2

+ 2C(s+ 3)(s− 3)(s− 1) + 2D(s+ 3)(s− 3)

One method to find A,B,C,D would be to expand the right hand side comple-
tely and then group terms to get

10s3 − 19s2 + 8s− 63 = (2A+2B+2C)s3 + (2A−10B−2C+2D)s2 + · · ·

and compare like terms (10 = 2A+2B+2C, etc.).



Alternatively, we can plug in specific numbers to get simple equations.
s = 3 → 60 = 48A+ 0 + 0 + 0

s = −3 → −528 = 0 + 0− 192B + 0

s = 1 → −64 = 0 + 0 + 0− 16D

and so A =
60

48
=

5

4
and B =

−528

−192
=

11

4
and D = 4. To get C we need to plug

in any number besides ±3 or +1. For example,
s = 0 → −63 = 6A− 6B + 18C − 18D

−63 = 18c− 81

so C = 1 and

Y =
5
4

s− 3
+

11
4

s+ 3
+

1

(s− 1)
+

4

(s− 1)2

y =
5

4
e3t +

11

4
e−3t + et + 4tet

238. Complete the following table:
Linear ODE Constant coefficients? Homogeneous?

ty′′ + sin(t)y = 0 no yes
y′′ − 5y ′ − y = 0 yes yes

y′′ − 5y ′ = y yes yes

x ′′ + tx ′ − 7x = 0 no yes

x ′′ = x+ t yes no

x ′ = cos(t) yes no

x ′ = cos(t)x no yes

239. Solve the ODE
y′ + 17y = 0

for y(t) using...
(a) separation of variables (this is a separable ODE).

dy

dt
= 17y ⇒

∫
dy

y
=

∫
17dt ⇒ ln |y| = 17t+ C ⇒ y = Ce17t

(b) characteristic polynomials (this is a homogeneous linear ODE with constant
coefficients).
The characteristic equation is

r − 17 = 0,

so r = 17 is the only root and e17t is the only fundamental solution. The
general solution is therefore y = Ce17t .



240. Solve the IVP
x ′ + 3x = 8, x(0) = 9

in several ways:
(a) Separation of variables (this is separable).

dx

dt
+ 3x = 8 →

∫
dx

−3x+ 8
= dt

→ −1
3
ln(−3x+ 8) = t+ C → x = Ce−3t + 8

3
.

From x(0) = 9 we get C = 19
3

and so x = 19
3
e−3t + 8

3
.

(b) Variation of parameters (this is first-order linear).
x ′ + 3x = 0 would have solution Ce−3t, so assume x = g · e−3t. Then

(ge−3t) ′+3(ge−3t) = 8 → g ′ =
8

e−3t
= 8e3t → g = 8

3
e3t+C

and x = g · e−3t = (8
3
e3t + C) · e−3t = 8

3
+ Ce−3t .

From x(0) = 9 we get C = 19
3

and so x = 19
3
e−3t + 8

3
.

(c) Integrating factor (this is first-order linear).
Version 1: Multiply the ODE by a completely unknown function M = M(t).

Mx ′ + 3Mx = 8M

The left-hand side is similar to (Mx) ′ = Mx ′ +M ′x, and it is exactly this
if M ′ = 3M . So we can use M = e3t to make (Mx) ′ appear.

e3tx ′ + 3e3tx = 8e3t (∗)
(e3tx) ′ = 8e3t

e3tx = 8
3
e3t + C

x = (8
3
e3t + C)e−3t

x = 8
3
+ Ce−3t

From x(0) = 9 we get C = 19
3

and so x = 19
3
e−3t + 8

3
.

Version 2: Since a(t) = 3 in the original ODE, we will have
M = eA(t) = e(

∫
3dt) = e3t.

Multiplying by e3t gives exactly the (∗) equation
e3tx ′ + 3e3tx = 8e3t,

from above, and the rest of the process is exactly like Version 1.
(d) The “big formula” for first-order linear ODEs.

Using a(t) = 3 and f(t) = 8, we have A(t) = 3t and

x =

(∫
eAfdt

)
e−A =

(∫
8e3tdt

)
e−3t = (8

3
e3t + C)e−3t = 8

3
+ Ce−3t .

From x(0) = 9 we get C = 19
3

and so x = 8
3
+ 19

3
e−3t .



(e) Laplace transformations.
Using either

L
[
8
]
= 8L

[
1
]
= 8L

[
e0t

]
= 8

1

s− 0
=

8

s
or

L
[
8
]
= 8L

[
1
]
= 8L

[
t0
]
= 8

0!

s0+1
=

8

s
,

we get

L
[
x ′]+ 3L

[
x
]
= L

[
8
]

(sX − 9) + 3X =
8

s

X =
9s+ 8

s(s+ 3)
just from solving for X

X =
8/3

s
+

19/3

s+ 3
as a sum of partial fractions

x =
8

3
L −1

[1
s

]
+

19

3
L −1

[ 1

s+ 3

]
x = 8

3
+ 19

3
e−3t

(f) Characteristic polynomials (this is a non-homogeneous linear IVP with con-
stant coefficients, so you will also need xNH for the polynomial g(t) = 8).
The characteristic polynomial gives r + 3 = 0, so r = −3 and the homoge-
neous part of the solution is x = Ce−3t.
From g = 8 (which we can think of as 8t0 or as 8e0t) we get that xNH is
some constant function. Writing xNH = A, we have

(A) ′ + 3(A) = 8

0 + 3A = 8

A = 8
3

So xNH = 8
3

and x = xHom + xNH = Ce−3t + 8
3

.

From x(0) = 9 we get C = 19
3

and so x = 19
3
e−3t + 8

3
.


