Amalysis 1 4 June 2024

Warm-up: Fill in the blank: $()' = x^3$

Anti-derivatives

The words "anti-derivative" and "integ will only talk about anti-derivatives.

• The derivative of $9x^4$ is $36x^3$.

- The function $9x^4$ is an **anti-derivative** of $36x^3$.
- The function $9x^4 7$ is *also* an anti-derivative of $36x^3$.
- If we wanted to describe *all* anti-derivatives of $9x^4$ we could write

The words "anti-derivative" and "integral" are closely related, but for today we

vative of $36x^3$. anti-derivative of $36x^3$. derivatives of $9x^4$ we could write $36x^3 + C$.

 $x^3 \rightarrow 3x^2$ Also x^{3+7} , $x^{3-9.2}$, etc., but we just write one simple anti-d. for this slide.

 $-\cos(x) \longrightarrow \sin(x) \longrightarrow \cos(x)$

 $\sim -2x^{-5}$

numbers easily (of course, today we have calculators to do that).

Logarithms are "an inverse of exponents", but this can be misleading. • () $\times 5 = 40$ and $6 \times ($) = 4 are both answered using division. • ()³ = 216 is answered using a (cube) root. • $\sqrt[3]{216}$ is by definition the number for that blank. In this example, it's 6. • $3^{(-)} = 81$ is answered using a (base 3) logarithm! • $\log_3 81$ is by definition the number for that blank. In this example, it's 4.

Historically, logarithms were created in the early 1600s as a way to multiply big

 $\sqrt[n]{x} = y$ means that $x = y^n$. By thinking carefully about powers, we can find properties of roots. • For example, $\sqrt[n]{kx} = \sqrt[n]{k} \cdot \sqrt[n]{x}$ because $(kx)^n = k^n x^n$.

 $a = \log_{b} c$ means that $b^{a} = c$. By thinking carefully about powers, we can find properties of logs. 0 For example,

because $b^c b^d = b^{(c+d)}$ • Also, $\log_b(c^d) = d \log_b(c)$.

 $\log_{h}(cd) = \log_{h}(c) + \log_{h}(d)$

e = 2.71828... is a number that often appears when studying

- probability,
- compound interest,
- complex numbers, 0
- analysis,

and more.

One definition is $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. • More generally, $\lim_{n \to \infty} (1 + \frac{x}{n})^n$ is exactly e^x .

 $\sqrt[n]{x}$ is a root, and \sqrt{x} without a superscript means $\sqrt[2]{x}$.

 $\log_{h}(x)$ is a logarithm, but $\log(x)$ without a subscript is ambiguous (its computer science), and *e* (in mathematics). • $\ln(x)$ always means $\log_{e}(x)$.

Using the definition of ln, we can see that $\rho^{\ln(x)} = x$ This is just like $(\sqrt{x})^2 = x$.

meaning is not clear). The most common bases are 10 (in high school), 2 (in

Derivalive formulas

	f(x)	f'(x)
	хp	р х р-1
	sin(x)	$\cos(x)$
	$\cos(x)$	$-\sin(x)$
	e^{x}	ex
C (A)	ln(x)	1 / x

Memorize these!

Give a formula for an anti-derivative of $\circ 10x^4$ • x²² ∞ x⁻¹⁵ ∞ x⁻¹ $\circ e^{x}$ Answer: x ln(x) - x. But this is too hard for now. \circ sin(x) \circ sin(6x) $\lesssim \sin(x^2)$) Likerally impossible (for anyone, forever).

The area of a rectangle is length times width. What about other shapes?

It is often important to calculate the area "under y = f(x)". What does this mean?

However, the standard meaning of "area under y = f(x)" is 0 that when f(x) < 0 we count this as "negative area".

• Often this looks like $\int \int or like \int (a \le x \le b).$

Example: The "area under $y = 2 - \frac{1}{2}x$ from x = 0 to x = 4" is 2.0 $\frac{1}{2}(height)(base) = \frac{1}{2}(4)(2) = 4$ 1.5 1.0 0.5

3

3

Example: The "area under $y = 2 - \frac{1}{2}x$ from x = 0 to x = 6" is

5

 $\frac{1}{2}(4)(2) + \frac{1}{2}(-1)(2)$ = 4 - 1 = 3

We write

for the area under y = f(x) between x = a and x = b.

 $\int^{b} f(x) \, \mathrm{d}x$

"the integral of f from a to b"

The area under y = 3 or y = x or $y = 2 - \frac{1}{2}x$ can be calculated using rectangles and triangles.

The area under $y = x^2$ from x = 1 to x = 2 is $\int_{-\infty}^{\infty} x^2 \, \mathrm{d}x,$

but what is this number?

For more complicated functions, we can approximate the area under y = f(x) with rectangles.

The area $\int_{1}^{2} x^2 dx$ is approximately $\sum_{k=1}^{10} \frac{1}{10} \left(1 + \frac{k}{10}\right)^2$ and

is exactly $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \left(1 + \frac{k}{n}\right)^2$.

• With some work is possible to show that $\sum_{k=1}^{n} \frac{1}{n} \left(1 + \frac{k}{n}\right)^2 = \frac{14n^2 + 9n + 1}{6n^2}$ so the area is $\frac{14}{6} = \frac{7}{3}$.

But there is a much easier way!

1.5

1.0

0.5

0.0

under a curve using an anti-derivative:

The Fundamental Theorem of Calculus

If f is continuous, then

Because integrals "undo" derivatives, they appear in many places in science and engineering.

Area from anti-derivatives

Instead of using a limit of a sum, there is a very nice way to compute area

vollage =

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a),$$

where F(x) is any function for which F'(x) = f(x).

 $F(x) = \frac{1}{2}x^3$ satisfies $F' = x^2$ $F(2) - F(1) = \frac{1}{3}(2)^3 - \frac{1}{3}(1)^3 = \frac{7}{3}$

f(x) dx = F(b) - F(a)with F' = f

0.0

0.5

1.0

1.5

3

Because we do F(b) - F(a) so often, it is helpful to have a shorter way to write this. The notation

 $g(x) \begin{vmatrix} x=b \\ x=a \end{vmatrix}$ or $g(x) \begin{vmatrix} b \\ g(x) \end{vmatrix} = a \begin{vmatrix} x-a \\ a \end{vmatrix}$

means g(b) - g(a). This is NOT an integral. It is just subtraction.

Example: Calculate $\cos(x) \Big|_{0}^{n}$.

 $\cos(\pi) - \cos(0) = (-1) - (1) = -2$

not the same as

FTC $\int_{a}^{b} f(x) dx = F(b) - F(a)$ with F' = f

Task 1: Calculate $\int_{-5}^{4} \frac{1}{3} x^2 \, dx = \frac{1}{9} \times^3 \Big|_{\mathbf{X}}^{\mathbf{X}} = \frac{4}{9} \int_{a}^{b} f(x) \, dx = F(x) \Big|_{x=a}^{x=b} \text{ with } F' = f$

 $=\frac{1}{3}(4)^{3}-\frac{1}{3}(-5)^{3}$

r(b) - r(a)

 $=\frac{127}{a}=21$

thinking of area or thinking of anti-derivatives. Assume *f*, *g* are functions, and *a*, *b*, *c* are numbers.

$$\int_{a}^{b} f dx + \int_{b}^{c} f dx = \int_{a}^{c} f dx$$

•
$$\int_{a}^{b} f dx + \int_{a}^{b} g dx = \int_{a}^{b} (f+g) dx$$

The properties below can be explained (and therefore easily remembered!) by

•
$$\int_{a}^{b} (c \cdot f) \, \mathrm{d}x = c \cdot \int_{b}^{a} f \, \mathrm{d}x$$

•
$$\int_{a}^{b} f dx = - \int_{b}^{a} f dx$$

Task 2: Calculate $\int_{0}^{5} |x-2| dx$.

 $\int_{0}^{2} (2-x) dx + \int_{2}^{5} (x-2) dx = \cdots$

Final answer: 1 – ET

Task 3: Calculate $\int_{0}^{6\pi} f(x) \, dx$ for the function $f(x) = \begin{cases} e^{x-\pi} & \text{if } x \le \pi \\ 2\cos(x) & \text{if } x > \pi. \end{cases}$

• Definite: $\int_{1}^{2} x^{2} dx = \frac{7}{3}$

In order to calculate this, we needed

bottom.

Indefinite:

$$x^2 dx =$$

2

 $\frac{1}{3}x^{3} + C$

The integrals we have done so far are examples of "definite integrals".

ed to use
$$\frac{1}{3}x^3$$
.

An indefinite integral is just a way of writing all the anti-derivatives of a function. We use the symbol but do not put any numbers at the top or

Euler / Lagrange

f' or $f^{(1)}$

f(-1)

All the ways of writing derivatives are still common today.

Only $\int f dx$ is common for anti-derivatives.

The four most common types of integrals are: "basic" (just think about derivatives) \leftarrow this is the kind we have done today, 0

- algebra-first, 0
- substitution, 0
- parts. 0

Often the most difficult part of an integral is deciding which technique to use. The best way to improve is practice!

Incental cechnicuces