Analysis 1 4 June 2024

Warm-up: Fill in the blank: $(__)' = x^3$

Anti-derivatives

The words "anti-derivative" and "integral" are closely related, but for today we

will only talk about anti-derivatives.

The derivative of $9x^4$ is $36x^3$.

- The function $9x^4$ is an **anti-derivative** of $36x^3$. The function $9x^4 - 7$ is *also* an anti-derivative of $36x^3$. If we wanted to describe *all* anti-derivatives of $9x^4$ we could write $36x^3 + C$.
-
-

−2*x*

−2

−1

 $-\cos(x) \longrightarrow \sin(x) \longrightarrow \cos(x)$

Historically, logarithms were created in the early 1600s as a way to multiply big

-
-
-
-
-

Logarithms are "an inverse of exponents", but this can be misleading. $\sigma(\underline{\hspace{0.3cm}}) \times 5 = 40$ and $6 \times (\underline{\hspace{0.3cm}}) = 4$ are both answered using division. $\left(\underline{\hspace{0.3cm}}\right)^3 = 216$ is answered using a (cube) root. is by definition the number for that blank. In this example, it's 6. $3^{(-)} = 81$ is answered using a (base 3) **logarithm**! $\log_3 81$ is *by definition* the number for that blank. In this example, it's 4 . 3 216 is *by definition* the number for that blank. In this example, it's 6

numbers easily (of course, today we have calculators to do that).

 $\sqrt[n]{x} = y$ means that $x = y^n$ means that $x = y^n$. By thinking carefully about powers, we can find properties of roots. \circledcirc *n n n* $kx =$ *k* ⋅ For example, $\sqrt[n]{kx} = \sqrt[n]{k} \cdot \sqrt[n]{x}$ because $(kx)^n = k^n x^n$.

 $a = \log_b c$ means that $b^a = c$ means that $b^a = c$. By thinking carefully about powers, we can find properties of logs. \circledcirc For example,

 $\mathbf{b} \in \mathbf{b}^c$ *b*^{d} = $\mathbf{b}^{(c+d)}$. Also, $\log_b(c^a) = d \log_b(c)$. $\log_b(c^d) = d \log_b(c)$

x because $(kx)^n = k^n x^n$

 $\log_b(cd) = \log_b(c) + \log_b(d)$

 n is exactly e^x

$e = 2.71828...$ is a number that often appears when studying

- probability,
- compound interest,
- complex numbers, \circledcirc
- analysis, \circledcirc

and more.

One definition is $e = \lim_{n} (1 + \frac{1}{n})^n$. More generally, $\lim_{n} (1 + \frac{x}{n})^n$ is exactly e^x . *n*→∞ $(1+\frac{1}{n})$ $\frac{1}{n}$ *n n*→∞ $(1+\frac{x}{n})$ $\frac{n}{n}$

is a root, and \sqrt{x} without a superscript means \sqrt{x} . *n* x is a root, and \sqrt{x}

 $\log_b(x)$ is a logarithm, but $\log(x)$ without a subscript is ambiguous (its computer science), and e (in mathematics). $\ln(x)$ always means $\log_e(x)$.

Using the definition of ln , we can see that $e^{\ln(x)} = x$. This is just like $(\sqrt{x})^2 = x$.

2 *x*

meaning is not clear). The most common bases are 10 (in high school), 2 (in $\,$

Derivative formulas

Memorize these!

Give a formula for an anti-derivative of 10*x*⁴ 2x5 σx^{22} σx^{-15} *x*−¹ e^x ln(*x*) Answer: x ln(x) - x. But this is too hard for now. \circ $\sin(x)$ sin(6*x*) $\sqrt[3]{\times}$ sin(x^2)) Literally impossible (for anyone, forever).

The area of a rectangle is length times width. What about other shapes?

Often this looks like $| \qquad \qquad$ or like $| \qquad \qquad |$ $\qquad \qquad (a \le x \le b).$

It is often important to calculate the area "under $y = f(x)$ ". What does this mean?

However, the standard meaning of "area under $y = f(x)$ " is \circ that when $f(x) < 0$ we count this as "negative area".

Example: The "area under $y = 2 - \frac{1}{2}x$ from $x = 0$ to $x = 4$ " is $\frac{1}{2}x$ from $x = 0$ to $x = 4$ 0.5 1.0 1.5 $2.0₁$ (height)(base) $= (4)(2) = 4$ 1 2 1 2

 $(4)(2) + (-1)(2)$ = 4 - 1 = 3 1 2 1 2

Example: The "area under $y = 2 - \frac{1}{2}x$ from $x = 0$ to $x = 6$ " is $\frac{1}{2}x$ from $x = 0$ to $x = 6$

-

We write

for the area under $y = f(x)$ between $x = a$ and $x = b$.

∫

a

b f(*x*) d*x*

"the integral of f from a to b"

The area under $y = 3$ or $y = x$ or $y = 2 - \frac{1}{2}x$ can be calculated using rectangles and triangles. $\frac{1}{2}x$

The area under $y = x^2$ from $x = 1$ to $x = 2$ is .
و ∫ 2 1 $x^2 dx$

but what is this number?

For more complicated functions, we can approximate the area under $y = f(x)$ with rectangles.

But there is a much easier way! \circledcirc

The area $\int x^2 dx$ is *approximately* $\sum_{n=1}^{\infty} (1 + \frac{1}{n^2})^2$ and ∫ 2 1 $x^2 dx$ 10 ∑ *k*=1 1 $\frac{1}{10}$ (1 + *k* $\overline{10}$ 2

is *exactly* \lim \sum $(1 + -)$. *n*→∞ *n* ∑ *k*=1 1 $\frac{1}{n}$ (1 + *k n*) 2

With some work is possible to show that \circledcirc *n* 1 *k* 2 $14n^2 + 9n + 1$ $\frac{1}{n}$ (1 + = *n*) ∑ 6*n*² *k*=1 14 7 = so the area is $\frac{17}{6} = \frac{7}{2}$. 3 6

1

2

1

2

Area from anti-derivatives

Instead of using a limit of a sum, there is a very nice way to compute area

voltage = ∫

If *f* is continuous, then
$$
\int_{a}^{b} f(x) dx = F(b) - F(a),
$$

where $F(x)$ is any function for which $F'(x) = f(x)$. $F(x)$ is any function for which $F'(x) = f(x)$

under a curve using an anti-derivative:

The Fundamental Theorem of Calculus

Because integrals "undo" derivatives, they appear in many places in science and engineering.

 $F(x) = \frac{1}{2}x^3$ satisfies $F' = x^2$ 13 11 $F(2) - F(1) = \frac{1}{2}(2)^3 - \frac{1}{2}(1)^3 =$ $\frac{1}{3}(2)^3 - \frac{1}{3}$

∫ *ba* $f(x) dx = F(b) - F(a)$ with $F^{\prime}=f$

7
23

Because we do $F(b) - F(a)$ so often, it is helpful to have a shorter way to write this. The notation

$means g(b) - g(a)$. This is NOT an integral. It is just subtraction.

 $g(x)$ or *x*=*b x*=*a*

 $\textsf{Example: Calculate }\cos(x)$. *π* 0

 $cos(\pi) - cos(\theta) = (-1) - (1) = -2$

∫ b same as

g(*x*) *b a*

a

Task 1: Calculate ∫

4

 -5

=

This is $F(b) - F(a).$

 $= 21$ 9 - 9 189 9

 $\frac{1}{3}x^2 dx = \frac{1}{9}x^3$

1

9

∫ *b a* $f(x) dx = F(x)$ *x*=*b x*=*a* with $F^{\prime}\!=\!f$

 $=\frac{1}{a}(4)^3-\frac{1}{a}(-5)^3$ 1 9

1

9

64

-125

 $x = 4$

 $x = -5$

∫ *b a* $f(x) dx = F(b) - F(a)$ with $F^{\prime}=f$ **FTC**

The properties below can be explained (and therefore easily remembered!) by

thinking of area or thinking of anti-derivatives. Assume *f*, *g* are functions, and *a*, *b*, *c* are numbers.

$$
\int_{a}^{b} f \, dx + \int_{a}^{b} g \, dx = \int_{a}^{b} (f + g) \, dx
$$

$$
\int_{a}^{b} (c \cdot f) dx = c \cdot \int_{b}^{a} f dx
$$

$$
\int_{a}^{b} f \, dx + \int_{b}^{c} f \, dx = \int_{a}^{c} f \, dx
$$

$$
\int_a^b f dx = - \int_b^a f dx
$$

O

2

 $\int_{0}^{1} (2-x)dx + \int_{0}^{1} (x-2)dx = ...$

Task 2: Calculate $\int_{0} |x-2| dx$. 5 0 $|x-2| dx$

2

5

Task 3: Calculate $\int_{\Omega} f(x) dx$ for the function \int_{Ω} 6*π* 0

Final answer: 1 - e-π

$f(x) dx$ for the function $f(x) = \begin{cases}$ $e^{x-\pi}$ if $x \leq \pi$ $2\cos(x)$ if $x > \pi$.

The integrals we have done so far are examples of "definite integrals".

Definite: $x^2 dx =$ ∫ 2 1 $x^2 dx$ 7 3

In order to calculate this, we neede

An **indefinite integral** is just a way of writing all the anti-derivatives of a function. We use the \rfloor symbol but do not put any numbers at the top or bottom.

 $\frac{1}{3}x^3 + C$

Indefinite:

$$
ed to use \frac{1}{3}x^3.
$$

$$
\int x^2 dx =
$$

Lagrange

or $\bm{\mathit{f}}$ $\frac{df}{dx}$ f' or $f^{(1)}$

Only $\int f dx$ is common for anti-derivatives.

f (−1)

All the ways of writing derivatives are still common today.

Integral techniques

The four most common types of integrals are: "basic" (just think about derivatives) \leftarrow this is the kind we have done today, \circledcirc

-
- algebra-first, \circledcirc
- substitution, \circledcirc
- parts. \circledcirc

Often the most difficult part of an integral is deciding which technique to use. The best way to improve is practice!