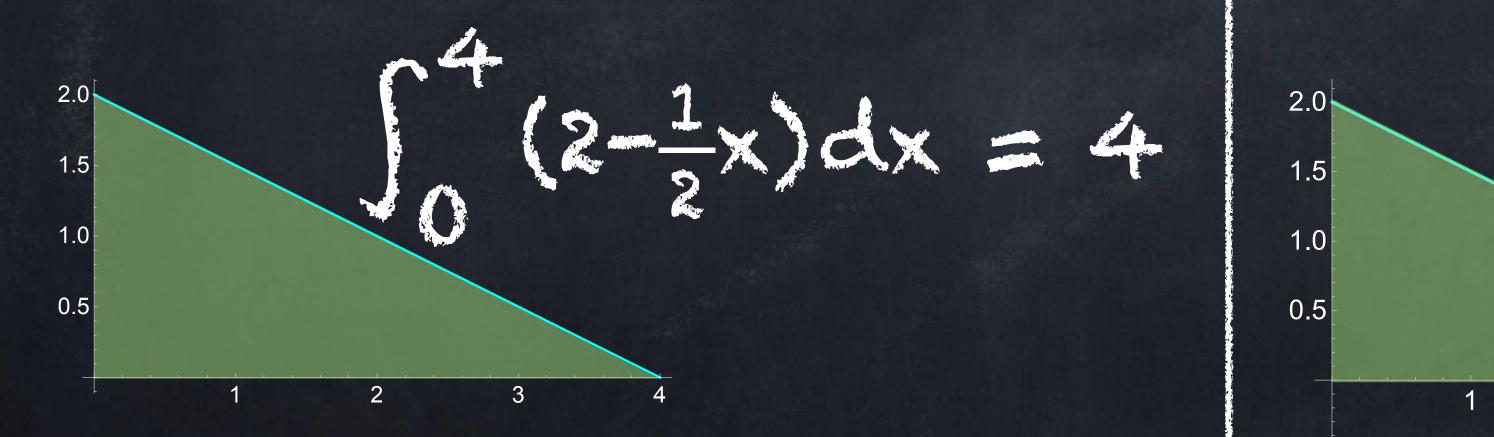
Warm-up: If u = 2x, then $\frac{\mathrm{d}u}{\mathrm{d}x} = 2$ and $\mathrm{d}u = 2\mathrm{d}x$. If $\frac{\mathrm{d}v}{\mathrm{d}x} = \cos(3x)$ then $v = \frac{1}{3}\sin(3x)$.

AMALYSES 1 18 June 2024

A definite integral, like

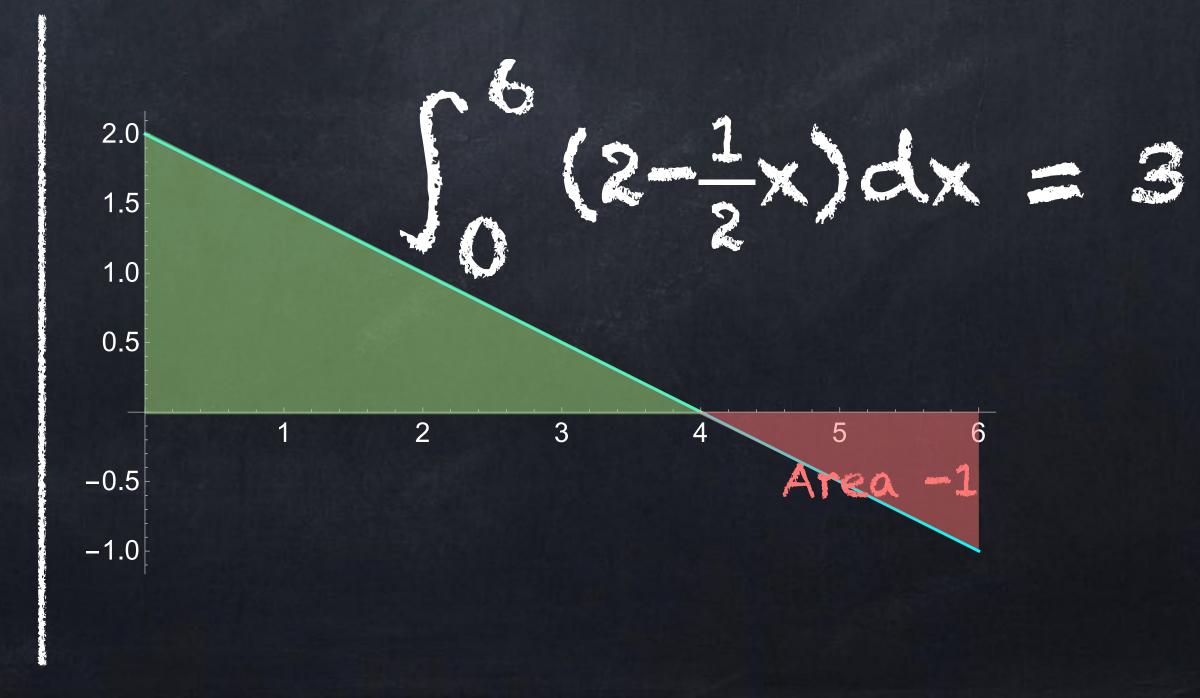
this is technically signed area: when f(x) < 0 we count negative area.



"the integral of f from a to b"

can be thought of as the "area under y = f(x)" between x = a and x = b, but

f(x) dx



The Fundamental Theorem of Calculus If f is continuous then $\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a),$ where F(x) is any anti-derivative of f(x).

An indefinite integral is just a way of asking for all the anti-derivatives: • Example: $\int (2 - \frac{1}{2}x) dx = 2x - \frac{1}{4}x^2 + C$

The numbers at the top and bottom of the integral symbol in a definite integral are called **bounds**. Indefinite integrals don't have bounds.

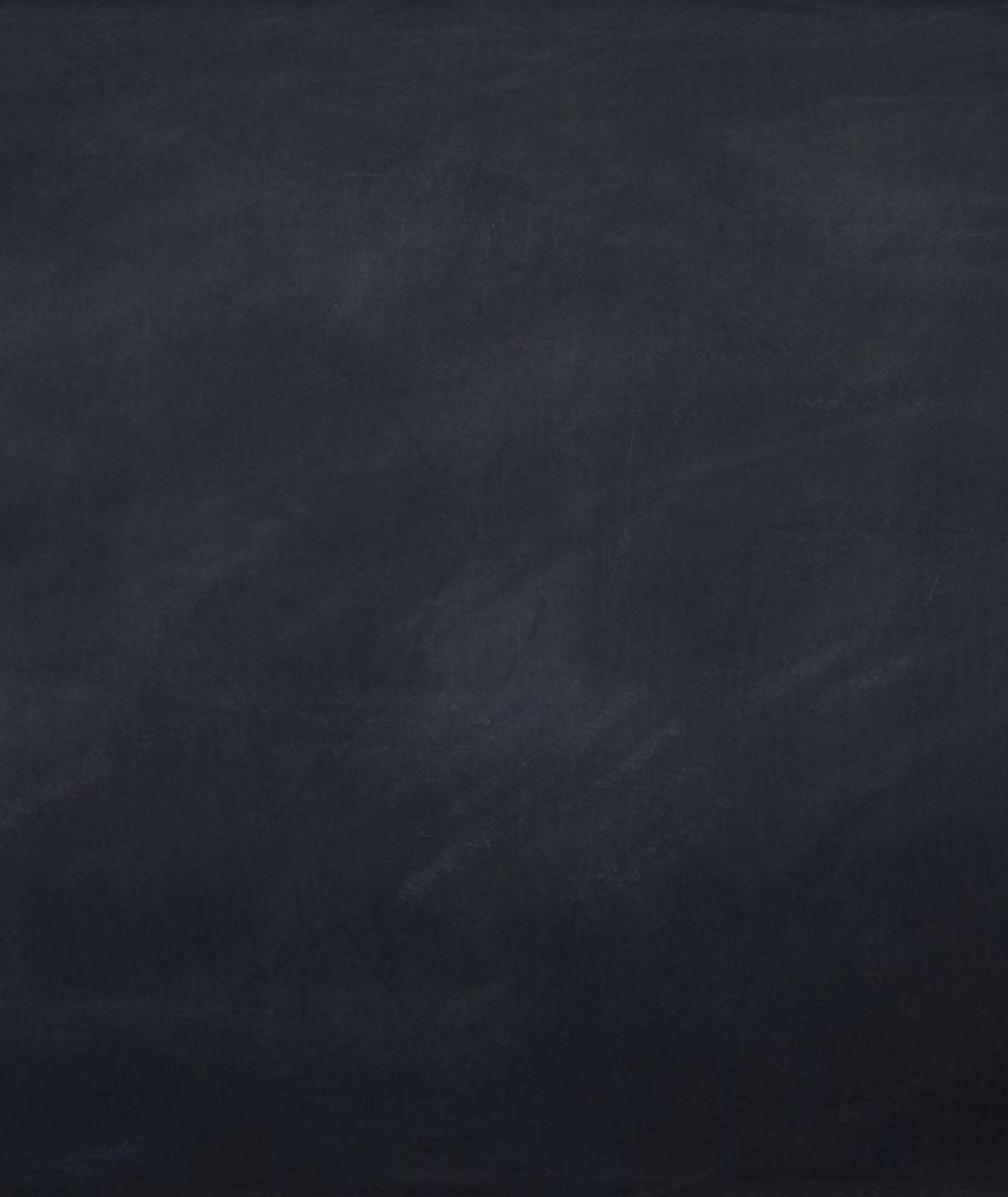
To use this we need $\int fg' dx = fg - \int f'g dx$

To use this we need $f(u)u'dx = \int f(u)du$ or f(u)3u'dx or similar.

Task 1: Find $\int \frac{24x}{\sqrt{4x^2 - 1}} dx.$

Using $u = 4 \times 2 - 1$, ...

Answer: $6/4x^2-1+C$

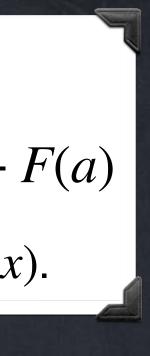


Task 2: Calculate $\int_{1/2}^{(\sqrt{5})/2} \frac{24x}{\sqrt{4x^2 - 1}} dx.$

Option 1: Using the final answer to the previous $x=(\sqrt{5})/2$ task, this is $6\sqrt{4x^2-1}$ = ... x=1/2

Option 2: Change x-values into u-values for the bounds: $\int_{0}^{4} \frac{3u^{-1/2}du}{u} = \frac{6u^{1/2}}{u} = \frac{12}{u}$

FTC $\int_{a}^{b} f(x) dx = F(b) - F(a)$ where F'(x) = f(x).



Task 3: Find $\int_{0}^{1} 2(x^{2}+3)^{2} dx = \int_{0}^{1} (2x^{4}+12x^{2}+18) dx$ NOT U-SUB!

Answer: 22.4

to use parts, u-sub, or other methods. The best way to improve is practice!

For many students the most difficult thing about integrals is recognizing when

Task 4: Evaluate $\int_{1}^{t} \frac{x}{x^2 + 1} dx$.

You should know $e^{0} = 1$ ln(1) = 0 $e^{1} = e$ ln(e) = 1 $e^{ln(x)} = x$ $ln(e^{x}) = x$

Using $u = x^{2} + 1$, ... Answer: $\frac{1}{2}ln(50) - \frac{1}{2}ln(2)$ or $\frac{1}{2}ln(25)$

or Ln(5)

 $(\sqrt{x})^2 = x$

VX² = X if x 2 0

Allernative. To use this, we choose u and dv so that our original integral is udv.

fg' + f'g = (fg)'

fg' = (fg)' - f'g

Last week's version. $\int fg' dx = fg - \int f'g dx$ To use this, we choose f and g so that our original integral is ((fg')dx.

 $u \, \mathrm{d}v = u \, v - v \, \mathrm{d}u$

ultraviolet voodoo might help you remember this formula

Example from last week: $2x\cos(3x)$ u dv $(2x)\cos(3x)dx = (2x)(\frac{1}{3}\sin(3x)) - (\frac{1}{3}\sin(3x))(2)dx$ $=\frac{2}{3}xsin(3x)-\frac{2}{3}sin(3x)dx$ $=\frac{2}{2}xsin(3x) + \frac{2}{3}cos(3x) + C$

(x) dx
$$\int \frac{u \, dv}{v \, dv} = \frac{u \, v}{v - \int v \, du}$$

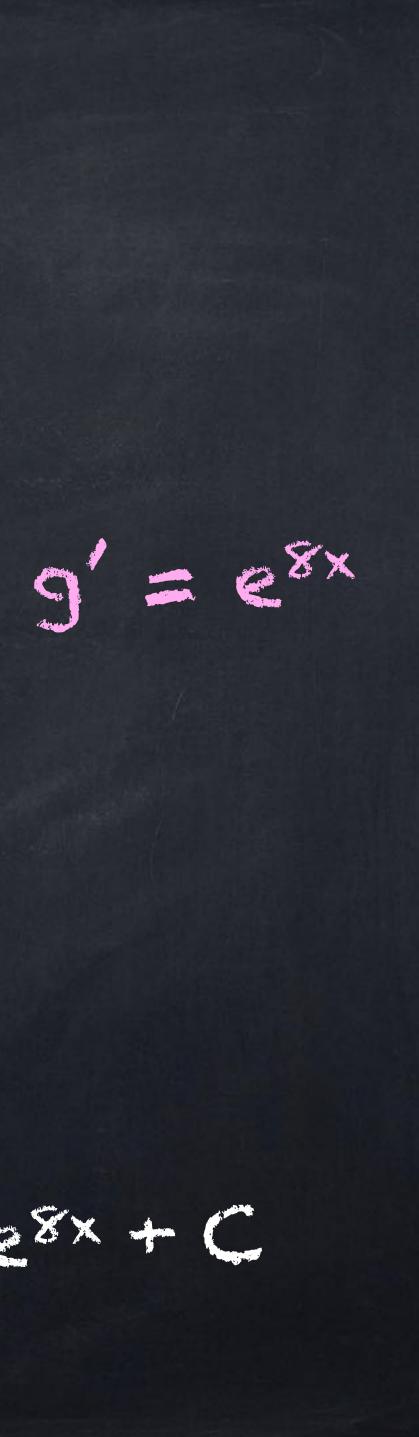
Task 5: $e^{8x}xdx$

1 1 Answer: $\frac{1}{8} \times e^{8x} - \frac{1}{64} e^{8x} + C$ or $\frac{1}{64} (8x - 1) e^{8x} + C$

same as

4

F = X



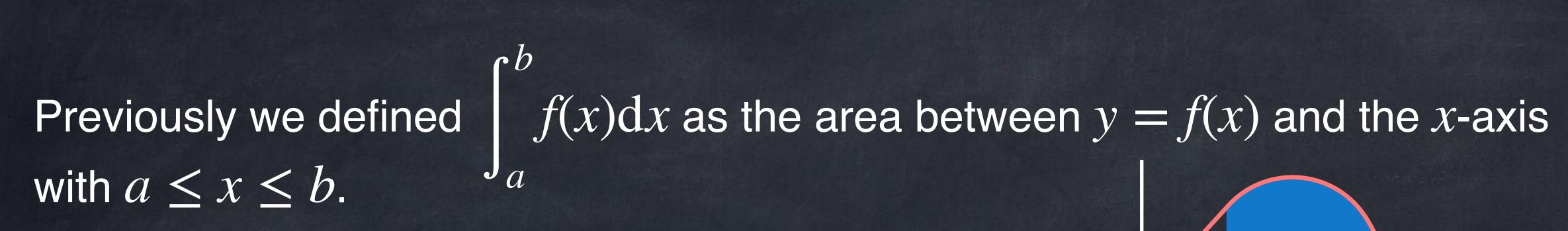
Task 5: $\int \ln(x) dx$

Answer: xLn(x) - x + C

f = Ln(x)

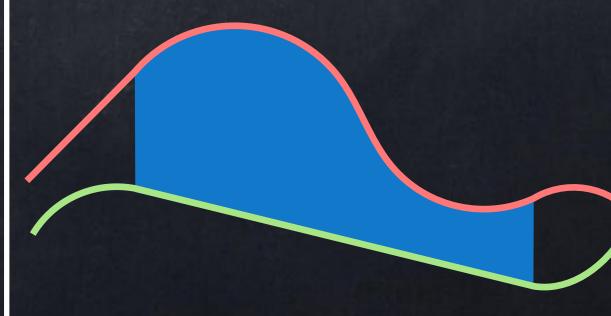
same as

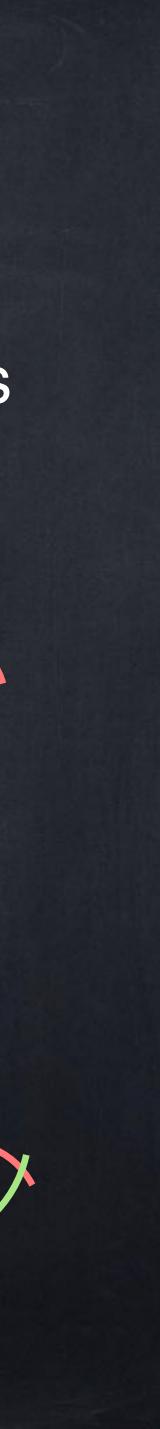
u = ln(x)



If $f(x) \le g(x)$ for all $a \le x \le b$ then the area between the curves y = f(x)and y = g(x) with $a \le x \le b$ is

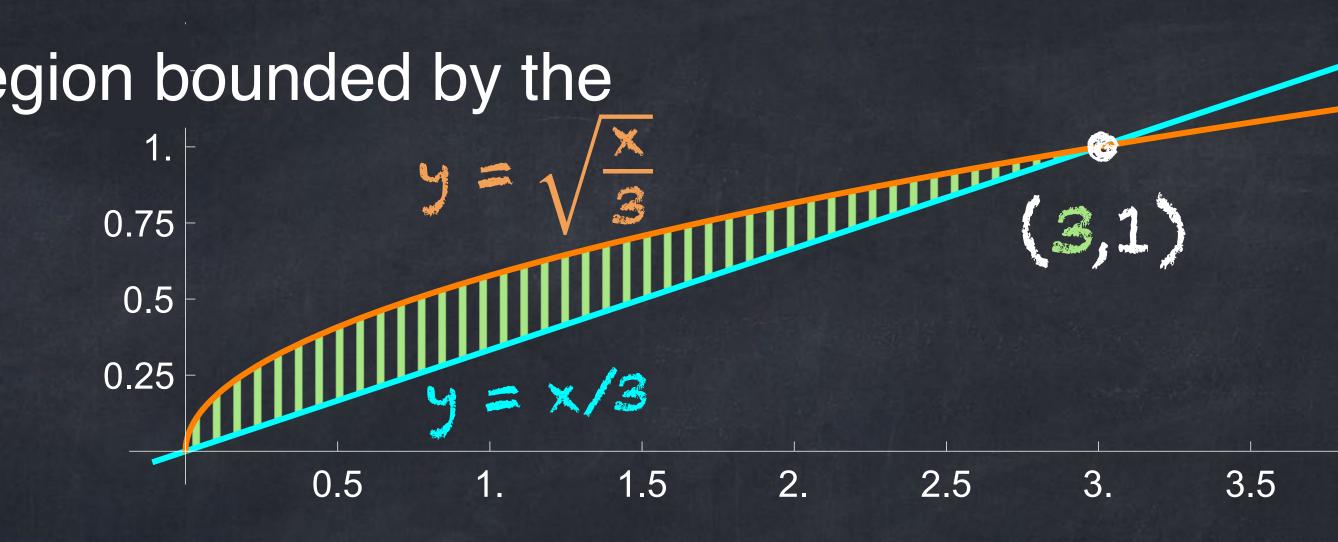
 $\int_{a}^{b} \left(g(x) - f(x)\right) dx.$

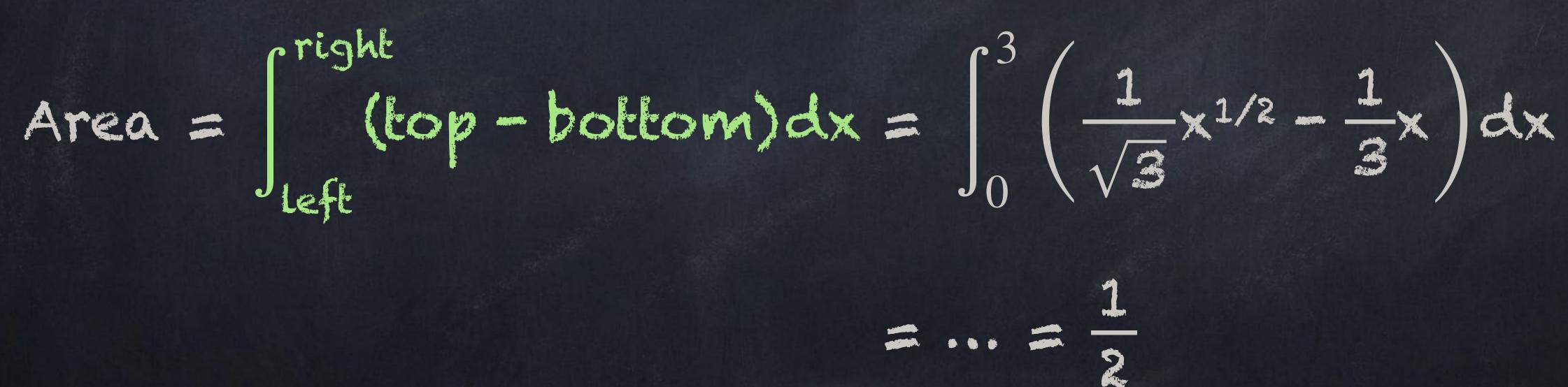


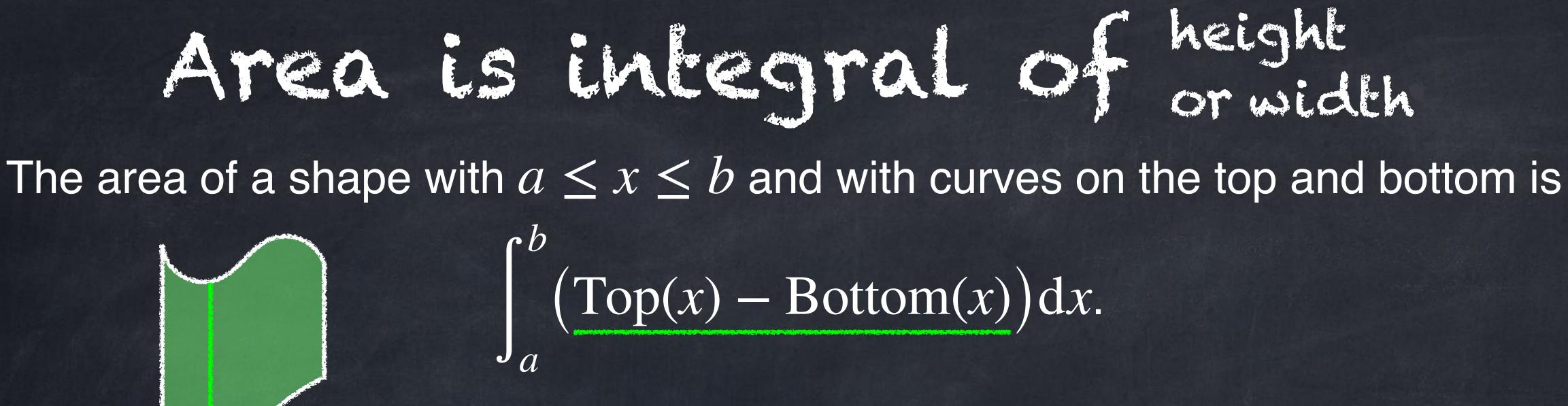


Example: Find the area of the region bounded by the curves $y = \frac{x}{3}$ and $x = 3y^2$.

bollom







The area of a shape with $c \leq y \leq d$ and with curves on the left and right is (Right(y))

For some shapes, both methods are possible!

$$) - Left(y) dy.$$

Example: Find the area of the region bounded by the curves $y = \frac{x}{3}$ and $x = 3y^2$. Left $x = 3y^2$. $x = 3y^2$

We can use EITHER $\int_{r}^{R} (\text{Height}) \, dx = \int_{r}^{R} (\text{Top} - \text{Bottom}) \, dx = \int_{0}^{3} \left(\sqrt{\frac{x}{3}} - \frac{x}{3} \right) \, dx = \frac{1}{2}$

or

$\int_{B}^{T} (\text{Width}) \, \mathrm{d}y = \int_{B}^{T} (\text{Right} - \text{Left}) \, \mathrm{d}y = \int_{0}^{1} (3y - 3y^2) \, \mathrm{d}y = \frac{1}{2}$

