Warm-up: Give the derivative of

Analysis 2 23 April 2024

 $\sqrt{x^2 + 6x + 12}.$

f(x)f''(x) $p x^{p-1}$ χp sin(x) $\cos(x)$ $-\sin(x)$ $\cos(x)$ (later) e^{x} $\ln(x)$ (later)

Derivalive formulas

Constant Multiple: (cf)' = cf'Sum Rule: (f + g)' = f' + g'**Product Rule:** (fg)' = fg' + f'g

Chain Rule: $(f(g))' = f'(g) \cdot g'$

Warmup:

 $\frac{\mathrm{d}}{\mathrm{d}x} \sqrt{x^2 + 6x + 12} =$

$$\left[\sqrt{x^2 + 6x + 12}\right] = \frac{1}{2\sqrt{x^2 + 6x + 12}} \cdot (2x + 6)$$
$$\left(\sqrt{x^2 + 6x + 12}\right)' = \frac{x + 3}{\sqrt{x^2 + x + 8}}$$

- To find the local min/max of f(x),
 - 1. Find the CPs of f.

 - 3. The First Derivative Test
 - If f' > 0 just to the left of x = c and f' < 0 just to the right of x = c, then f has a local maximum at x = c.
 - If f' < 0 just to the left of x = c and f' > 0 just to the right of x = c, then f has a local minimum at x = c.
 - If f' has the same sign on both sides of x = c, then f has *neither* a local minimum nor local maximum at x = c.

2. Compute signs of f' somewhere in between each critical point, and at one point with x < all critical points, and at one point with x > all CPs.

Task 1: Find and classify* the critical point(s) of $f(x) = \sqrt{x^2 + 6x + 12}.$

* Determine whether it is a local minimum, local maximum, or neither.

 \bigcirc

1/2

Task 2: Given that $x = \frac{3}{2}$ is a critical point of $f(x) = x^{6} - \frac{9}{5}x^{5} - \frac{15}{2}x^{4} + 15x^{3} + 18x^{2} - 54x + 5,$ classify it as a local minimum, local maximum, or neither. f'(1) < 0 and f'(2) > 0, so you might think x = 1.5 is a min. But in order to use the First Derivative Test we need to look at x-values in between critical points. In fact, f(x) has another critical point at $\sqrt{2} \approx 1.414$, so the 1st D.T. would require us to look at an x-value in between $\sqrt{2}$ and 1.50. f'(1.42) > 0 and $f'(1.6) < 0 \rightarrow x = 1.5$ is a local max.

Task 2: Given that $x = \frac{3}{2}$ is a critical point of $f(x) = x^{6} - \frac{9}{5}x^{5} - \frac{15}{2}x^{4} + 15x^{3} + 18x^{2} - 54x + 5,$ classify it as a local minimum, local maximum, or neither.

o max al x = 3/2 = 1.5 local min at $x = \sqrt{3}$ -1.6 1.7 1.8

kind of critical point x = c is.

0 sure we do not "skip over" any when calculating f' at points.

Philosophical: we are looking for a *local* property, so why are we doing 0 anything at points with $x \neq c$?

There are some problems with using the First Derivative Test to learn what

Practical: we need to know all the CP of f in some interval in order to be

If g(x) is negative for x < 6 and g(x) is positive for x > 6 then...

- Could g'(6) be positive?
- Could g'(6) be negative? 0
- Could g'(6) be zero? 0

x = c

In the graphs below, f(x) has a local minimum:

y = g(x)y = f'(x)

y = 0

- To find the local min/max of f(x),
 - 1. Find the critical points of f.

- 2. Compute (the signs of) the values of f'' at each CP.
- 3. The Second Derivative Test
- (The test does not help if f''(c) = 0.)

• If f'(c) = 0 and f''(c) > 0 then f has a local minimum at x = c. • If f'(c) = 0 and f''(c) < 0 then f has a local maximum at x = c.

- To find the local min/max of f(x),
 - 1. Find the critical points of f.
 - 2. Compute signs of f' somewhere in each interval. 3. **The First Derivative Test**
 - or
 - 2. Compute signs of f'' at each CP. 3. **The Second Derivative Test**

Task: Find the critical points of $f(x) = 2x^3 -$

and classify each one as a local minimum or local maximum.

 $f(x) = 2x^3 - \frac{3}{2}x^2 - 135x + 22$

Answer: x = -4.5 is a local max x = 5 is a local min

These two functions are both increasing:

They both have f'(x) > 0, but clearly their behavior is different.

There are several official definition for "concave up" and "concave down". We will just use pictures.

If f''(x) > 0 then f is concave up. If f''(x) < 0 then f is concave down.

Image source: https://www.mathsisfun.com

also called "convex" or "convex down"

concave down

also called "concave" or "convex up"

There are several official definition for "concave up" and "concave down". We will just use pictures.

If f''(x) > 0 then f is concave up. If f''(x) < 0 then f is concave down. concave up

also called "convex" or "convex down"

concave down

also called "concave" or "convex up"

Definition: an inflection point is a point where the concavity changes.

An inflection point <u>might</u> also be a critical point, but it does not have to be. These two are inflection points but not critical points.

Monotonicity

- If f' > 0 then f is "increasing",
- If f' < 0 then f is "decreasing".
- An x-value* where f' is zero or doesn't exist is a "critical point".

<u>Concavity</u>

- If f'' > 0 then f is "concave up",
- If f'' < 0 then f is "concave down".
- An x-value* where f'' changes sign is an "inflection point" (we will see examples next week).

* The x-value must to be in the domain of f.

