

Warm-up: What is the derivative of $x^4 + 97.409$?

Warm-up: What is the derivative of $x^4 + \pi^4$?

Analysis 2 14 May 2024

• If your position after t seconds is y(t) = y(t)

<u>estimate</u> your "*instantaneous* speed" when t = 2.

 $\frac{y(2.1) - y(2)}{2} = \frac{4.641 - 4.4}{0.1} = 2.41 \frac{m}{s}$ 4(2.001) - 4(2) = 2.4001 0.001

 $y(t) = \frac{1}{10}t^2 + 2t$

If your position after t seconds is

what is your "*instantaneous* speed" <u>exactly</u> when t = 2? $\lim_{t \to 2} \frac{\left(\frac{1}{10}t^2 + 2t\right) - \left(\frac{1}{10}(2)^2 + 2(2)\right)}{t = 2.4}$

lo remtile -

 $y(t) = \frac{1}{10}t^2 + 2t$

We can find this value by first using algebra $(0.1t^2 + 2t) - (4.4)$ t + 2210 2

In general, we write

 $X \rightarrow a$

to mean that

- close to L.
- official definition: for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$.

We can often calculate these by using algebra first.

$\lim f(x) = L,$

• informally: all values of x very close a give values of f(x) that are very

Example 1: Calculate $\lim_{x \to 0^+} \frac{(x+5)^2 - 25}{x}$. $x \rightarrow 3$

Example 2: Calculate $\lim_{x \to 0} \frac{(x+5)^2 - 25}{x}$.

Example 3: Calculate $\lim_{x \to 3} \frac{\sqrt{x+13}-4}{x-3}$.

Answer: 13

Answer: 10

Answer: 1 S

Note: we <u>cannot</u> say because, for example, are both "—".

This is an example of an "indeterminant form". We will see more soon.

The official definition

lim f(x) = L means that for any $\varepsilon > 0$ there exists an X such that 0 $\chi \rightarrow \infty$

 $x \rightarrow -\infty$ limits are very easy to see in graphs.

if x > X then $|f(x) - L| < \varepsilon$.

and a similar one for "lim" can be difficult to understand at first, but these

The line y = c is a horizontal asymptote of the graph y = f(x) if $\lim_{x \to -\infty} f(x) = c \quad \text{or} \quad \lim_{x \to \infty} f(x) = c.$ $x \rightarrow -\infty$ $\chi \rightarrow \infty$

Examples: $f(x) = \frac{8x^2 + 30x - 9}{4x^2 + 5}$ has a horizontal asymptote at y = 2.

• $f(x) = \frac{10^x}{10^x + 58}$ has a horizontal asymptote at y = 1 and also at y = 0.

$\infty - 5 = \infty, \quad \frac{\infty}{2} = \infty, \quad \frac{14}{\infty} = 0, \quad \infty + \infty = \infty$ $\infty - \infty = 0$ or $\frac{\infty}{\infty} = 1$

 $\lim_{x \to \infty} \frac{x+1}{2x} = \frac{1}{2}, \qquad \lim_{x \to \infty} \frac{2^x}{2x+1} = \infty, \qquad \lim_{x \to \infty} \frac{\sqrt{x}}{2x+1} = 0$

There is no way to simplify $\frac{\infty}{\infty}$ that always works. This is an example of an indeterminate form. Other indeterminate forms include

Depending on what formulas are causing 0 or $\pm \infty$ to appear, limits with these patterns can have many different values.

$\infty - \infty, \qquad \frac{0}{0}, \qquad 0 \times \infty, \qquad 0^0, \qquad 1^\infty, \qquad \infty^0.$

For example,
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

This means that for values of *x* very close to 0, the values of f(x)are all extremely large.

Sometimes the limit as x approaches some finite point will be ∞ or $-\infty$.

For example,
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

Official definitions (we won't use these): $X \rightarrow a$

 $X \rightarrow a$

Sometimes the limit as x approaches some finite point will be ∞ or $-\infty$.

δ lim $f(x) = \infty$ means that for any M > 0 there exists $\delta > 0$ such that if $|x - a| < \delta$ then f(x) > M. $\delta \lim f(x) = -\infty$ means that for any M > 0 there exists $\delta > 0$ such that if $|x - a| < \delta$ then f(x) < -M.

We write

for the "limit as x approaches a from the left" or "... from below". This means we only look at x values that are less than a.

Similarly,

means the "limit as x approaches a from the right" or "... from above", where we only look at x values that are more than a.

ONCOSICACE LEMAILS

 $\lim_{x \to \infty} f(x)$ $x \rightarrow a^{-}$

 $\lim f(x)$

We write

for the "limit as x approaches a from the left." This means we only look at x values that are less than a.

Example:
$$\lim_{x \to 0^-} x \sqrt{1 + \frac{1}{x^2}} = -1.$$

×	-0,1	-0,05
f(x)	-1.00499	-1.001249

ONCES SECLEMENTES

 $\lim f(x)$ $x \rightarrow a^{-}$

-0,01	-0,001	-0,0001
-1,00005	-1.0000005	-1,00000001

We write

at x values that are less than a.

Example: $\lim_{x \to 0^-} x \sqrt{1 + \frac{1}{x^2}} = -1.$

 $\lim_{x \to 0^+} x \sqrt{$ $1 + \frac{1}{2} = 1$. x^2

ONCESICACE LEMARES

- $\lim f(x)$ $x \rightarrow a^{-}$
- for the "limit as x approaches a from the left." This means we only look

Note: writing

only be written as part of a limit:

ONCES SECLEMENTES

4^{+} by itself does not mean anything (like $\sqrt{-}$ or |-| alone). This should

 $\lim_{x \to 4^+} f(x).$

Some books use $\lim_{x \neq 4} f(x)$ and $\lim_{x \searrow 4} f(x)$ instead of $\lim_{x \to 4^-} f(x)$ and $\lim_{x \to 4^+} f(x)$.

One-sided limits are related to standard limits in the following way:

$x \rightarrow a^{-1}$ $x \rightarrow a^+$

Logically, this also means that • if $\lim_{x \to a} f(x)$ exists then $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$.

- If $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$ have different values, or if at least one of
 - them does not exist, then $\lim_{x \to \infty} f(x)$ does not exist. $x \rightarrow a$

It's possible for $\lim_{x\to a} f(x)$ to be completely unrelated to the value f(a).

3

2

But for many functions we *can* calcul function at the point:

 $\lim_{x \to 7} \frac{x^2 + 1}{x^2 - 2} =$

But for many functions we can calculate limits just by finding the value of the

$$\frac{7^2 + 1}{7^2 - 1} = \frac{50}{47}$$

Informally, a **continuous function** is one with no holes, jumps, or asymptotes in its graph. This means you could draw its graph without picking up your pen or pencil.

Continuous

Let f(x) be a function and let p be a number. We say "f is continuous at p" if all of these are true:

- 1. f(p) is defined,
- 2. $\lim_{x \to \infty} f(x)$ exists, $x \rightarrow p$
- 3. $\lim_{x \to \infty} f(x) = f(p)$. $x \rightarrow p$

If any of these is false, f is **discontinuous**. What can discontinuity look like?

The graph y = f(x) has a jump at x = a if 1. $\lim_{x \to \infty} f(x)$ is finite, and

- $x \rightarrow a^{-}$
- 2. $\lim_{x \to 0} f(x)$ is finite, and $x \rightarrow a^+$
- 3. $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$.
- The graph y = f(x) has a hole at x = a if
- 1. $\lim_{x \to \infty} f(x)$ is finite and $X \rightarrow a$
- 2. f(a) is not defined or $f(a) \neq \lim_{x \to a} f(x)$.

Types of discontinuities

 $x \rightarrow a$

Types of discontinuities

The vertical line x = a is a vertical asymptote of the graph y = f(x) if any of the following are true:

 $x \rightarrow a^{-}$

Note: a horizontal asymptote ($\lim L = L$ or $\lim L = L$) has nothing to do with $\chi \rightarrow \infty$ $\chi \rightarrow -\infty$ discontinuity.

 $\lim_{x \to a^-} f(x) = -\infty \quad \text{or} \quad \lim_{x \to a^+} f(x) = -\infty \quad \text{or}$ $\lim_{x \to a^-} f(x) = +\infty \quad \text{or} \quad \lim_{x \to a^+} f(x) = +\infty.$

Me will answer this next week.

Task 1: What are the discontinuities of $f(x) = \frac{(x+7)(x-3)}{(x+2)(x-3)}$?