Analysis 2 21 May 2024

Warm-up: Simplify $\frac{2(x+h)^2 - 18}{h}$ assuming $h \neq 0$.

Let f(x) be a function and let p be a number. We say "*f* is continuous at *p*" if all of these are true:

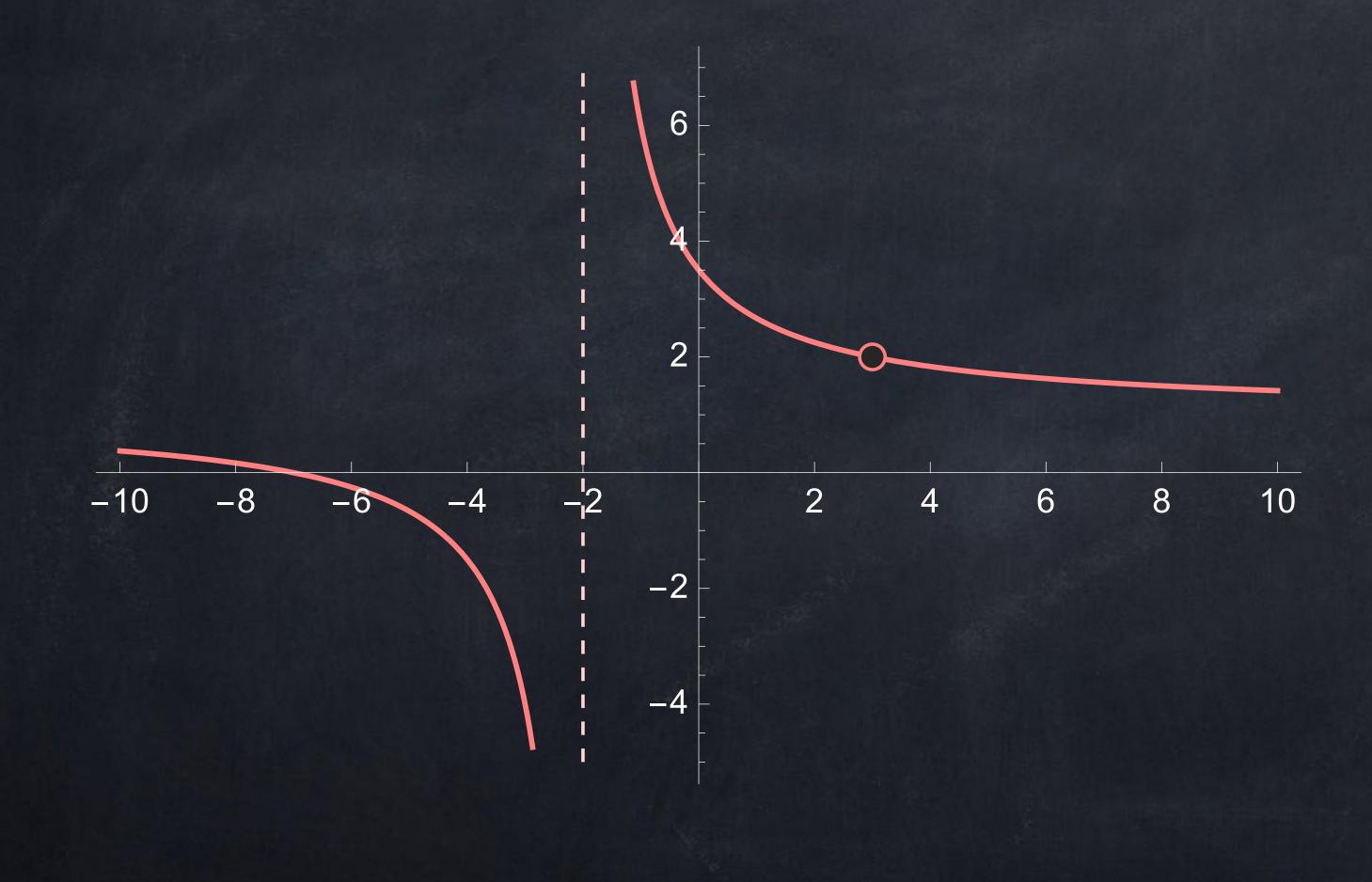
- 1. f(p) is defined,
- 2. $\lim_{x \to \infty} f(x)$ exists, $x \rightarrow p$
- 3. $\lim_{x \to \infty} f(x) = f(p)$. $x \rightarrow p$

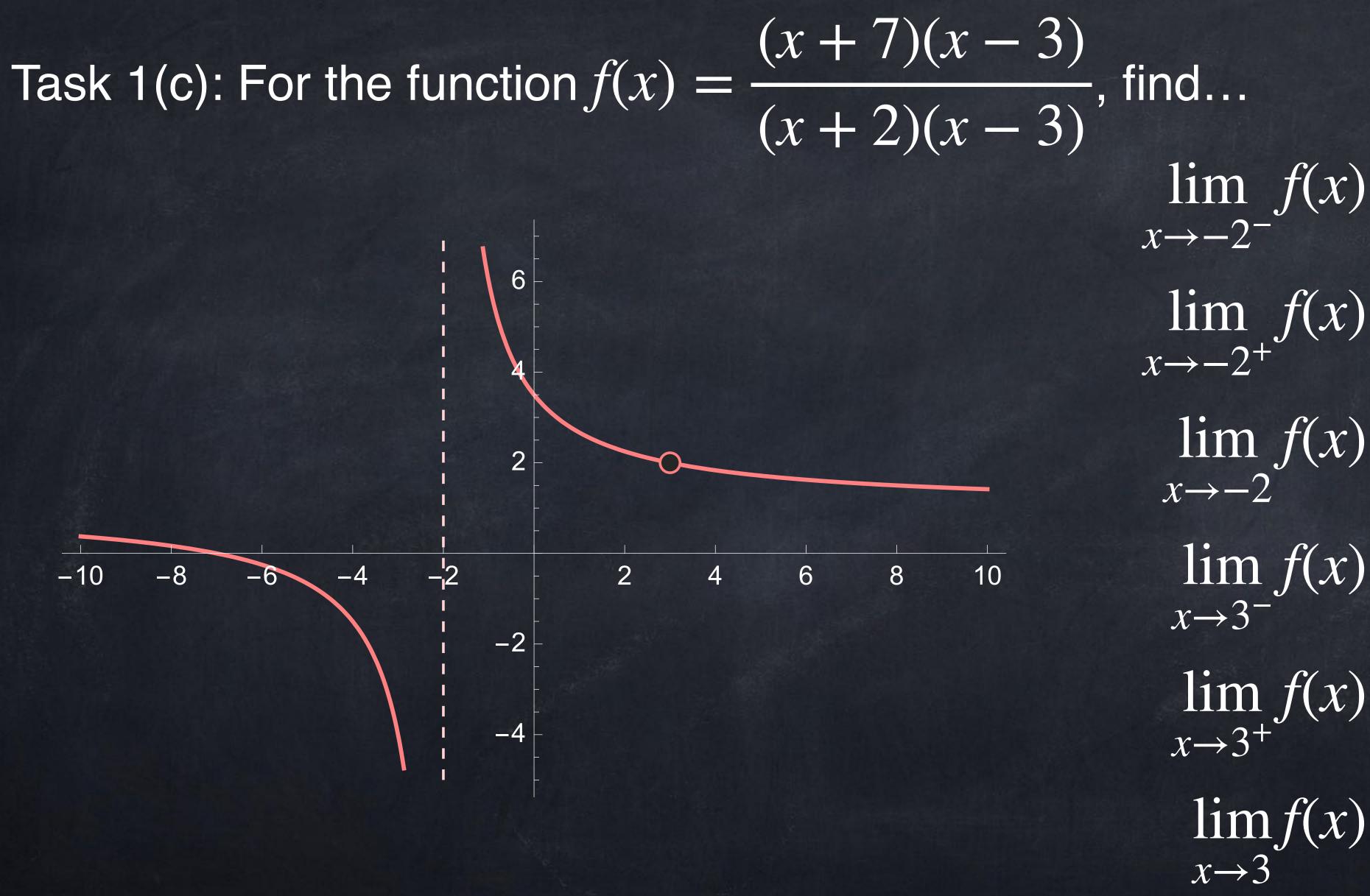
If any of these is false, f is **discontinuous**. What can discontinuity look like?

Task 1(a): At what x-values is $f(x) = \frac{(x+7)(x-3)}{(x+2)(x-3)}$ discontinuous?

Continuous means 1. f(p) is defined, 2. $\lim_{x \to \infty} f(x)$ exists, $x \rightarrow p$ 3. $\lim_{x \to 0} f(x) = f(p)$. $x \rightarrow p$

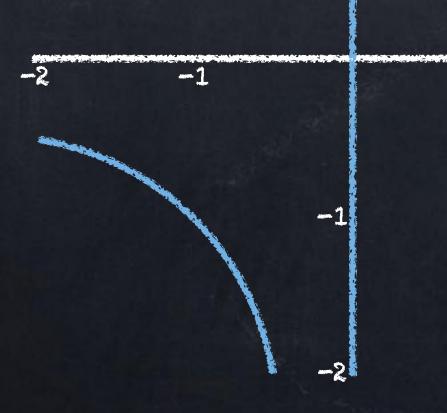
Task 1(b): *Describe* the discontinuities of $f(x) = \frac{(x+7)(x-3)}{(x+2)(x-3)}$.



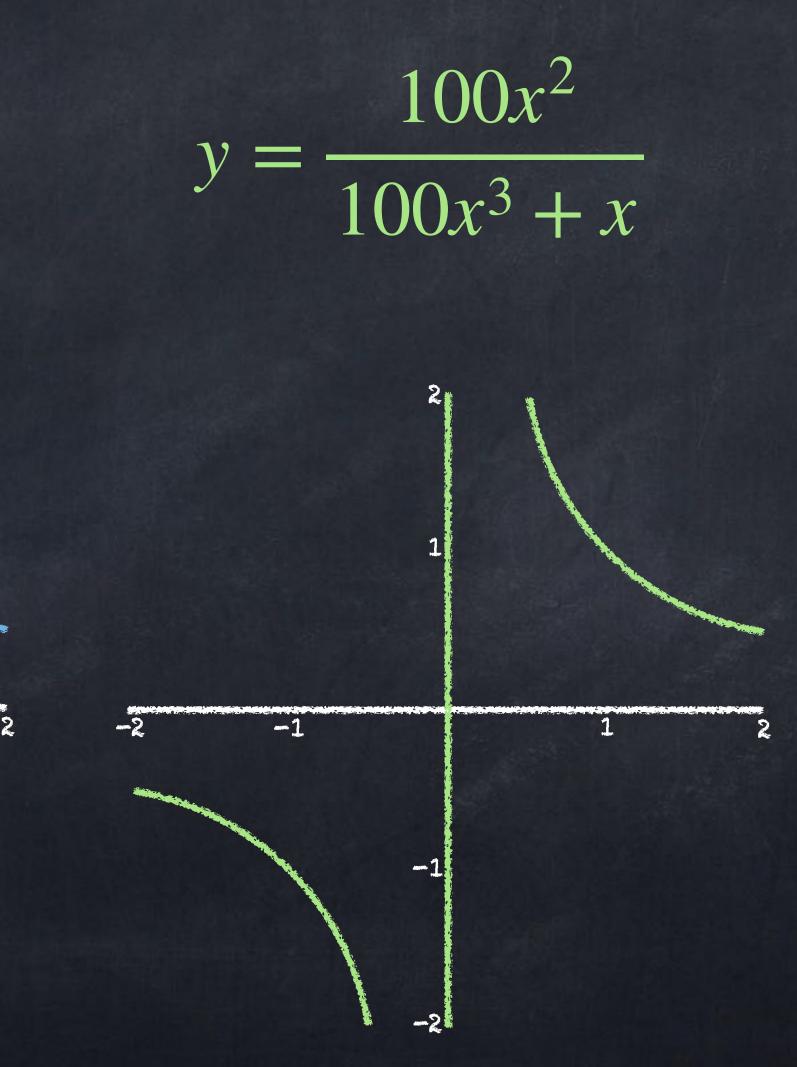


Why talk about limits when we can just ask a computer to graph a function?

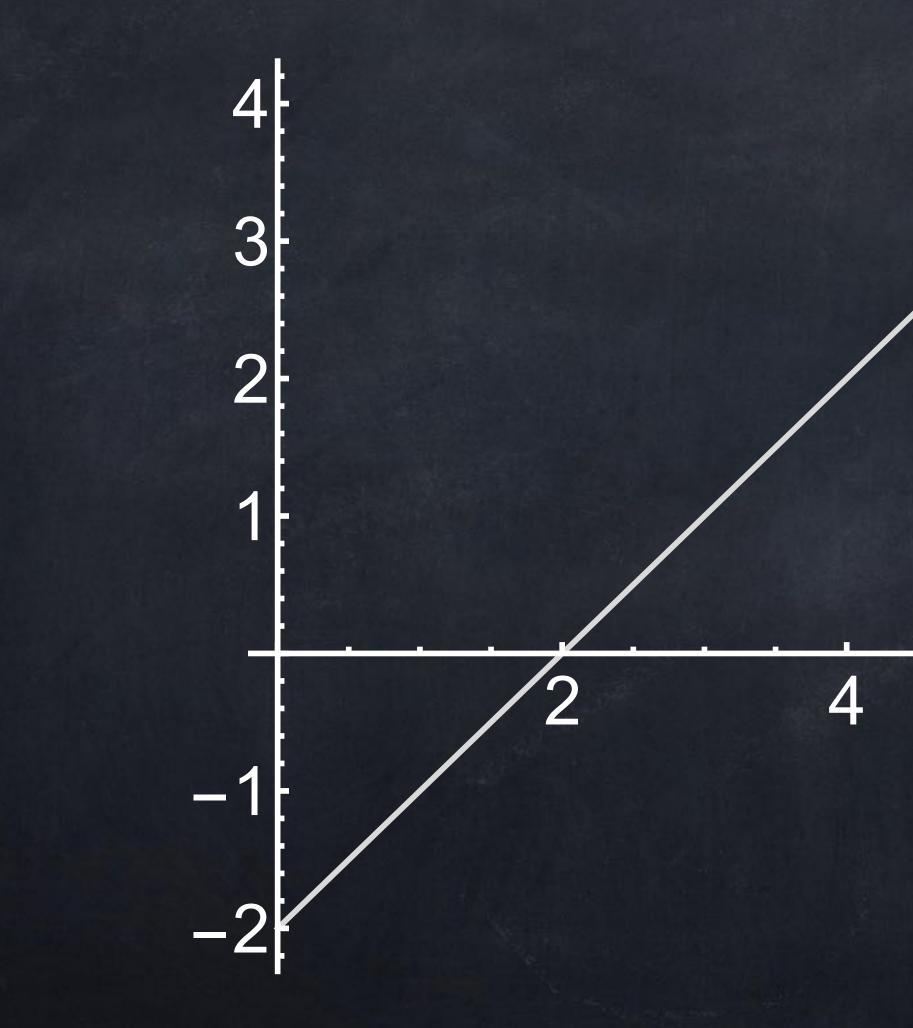
$y = \frac{100x^2 + 100}{100x^3 + 100x}$



1



Task 2: What is $\lim_{x\to 6^-} f(x)$ for the function below? What is $\lim_{x\to 6^-} f(x)$?



Our previous definition describes when a function is *continuous at a point*.

We say "f is continuous on the interval [a,b]" if it is continuous at all points p for which $a \leq p \leq b$.

or (a, b], and infinite intervals like $[a, \infty)$.

We say "f is continuous everywhere" or "f is continuous" or "f is a continuous function" if it is continuous at all points.

• We can also talk about open intervals (a, b), semi-open intervals [a, b)

If the limits all exist and are finite, then

- $\lim_{x \to a} \left(f(x) + g(x) \right) = \left(\lim_{x \to a} f(x) \right) + \left(\lim_{x \to a} g(x) \right),$
- $\lim_{x \to a} \left(f(x) \cdot g(x) \right) = \left(\lim_{x \to a} f(x) \right) \left(\lim_{x \to a} g(x) \right),$
- $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0,$
- $\lim f(g(x)) = f(\lim g(x))$ if f is a "nice" continuous function. $x \rightarrow a$ $X \rightarrow a$
- These all work for $x \to \infty, x \to -\infty, x \to a^+$, and $x \to a^-$ too!

Limit properties

Important examples:

- Any polynomial is continuous.
 - This includes constant functions.
- $\sqrt[n]{x}$ is continuous if *n* is odd.
- $\sqrt[n]{x}$ is continuous on $[0,\infty)$ if *n* is even.
- sin(x) and cos(x) are continuous.
- e^x and a^x are continuous.
- $\ln(x)$ and $\log_{h}(x)$ are continuous on $(0,\infty)$. You can use all of these without giving any proofs or reasons.

Fact: if f(x) and g(x) are both continuous, then the • $\operatorname{sum} f(x) + g(x)$,

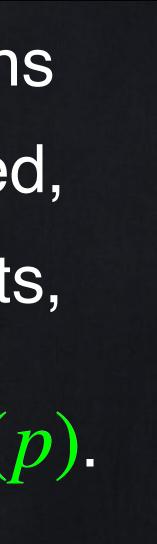
- difference f(x) g(x),
- product $f(x) \cdot g(x)$, and
- composition f(g(x))0

are all continuous.

Example:
$$\lim_{x \to 4} \frac{6^{\sin(\pi x)}}{1 + x^2} = \frac{6^{\sin(4\pi)}}{1 + 4^2}$$

17

Continuous means 1. f(p) is defined, 2. $\lim_{x \to \infty} f(x)$ exists, $x \rightarrow p$ 3. $\lim_{x \to 0} f(x) = f(p)$. $x \rightarrow p$



There is a nice trick we can use for these:

• $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, or • $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$, \leftarrow be choically then $\lim \frac{f(x)}{dt} = \lim \frac{f'(x)}{dt}$. $x \rightarrow a \ g(x)$ $x \rightarrow a \ g'(x)$

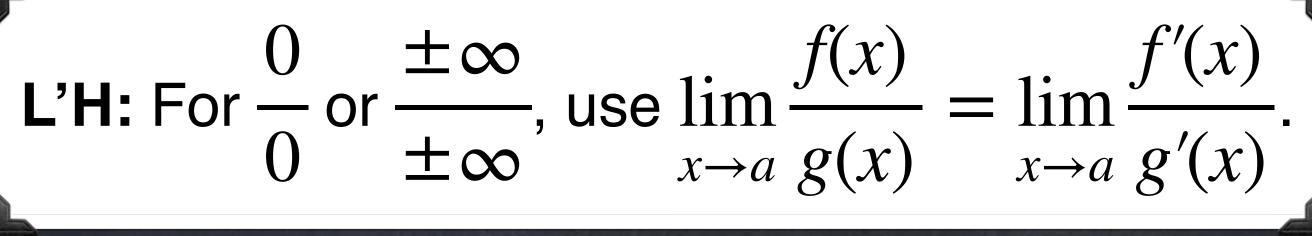
Also true for $\lim_{x \to a^+} \inf_{x \to a^-}$. Note that $\frac{f}{g} \neq \frac{f'}{g'}$; it is only the limits that are equal.

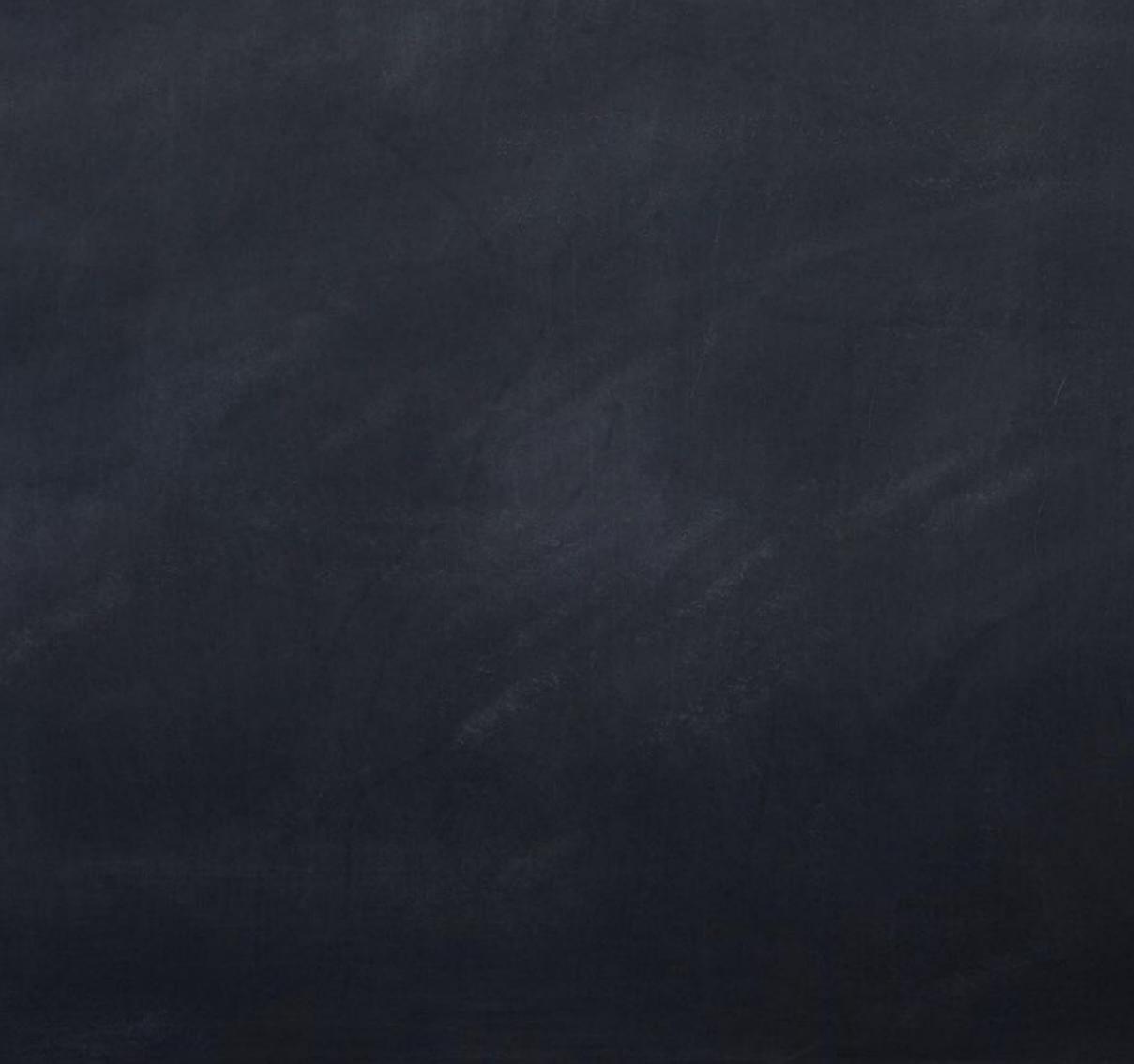
It's common to see limits that look like " $\frac{0}{0}$ " or " $\frac{\infty}{\infty}$ " if you just plug in the value.

L'Hôpital's Rule also spelled L'Hospital If f and g are differentiable near x = a, and $\lim_{x \to a} \frac{f(x)}{g(x)}$ exists, and either four cases (++,+--)

Task 1: Find $\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^4 - x^3 + 4x - 4}$.

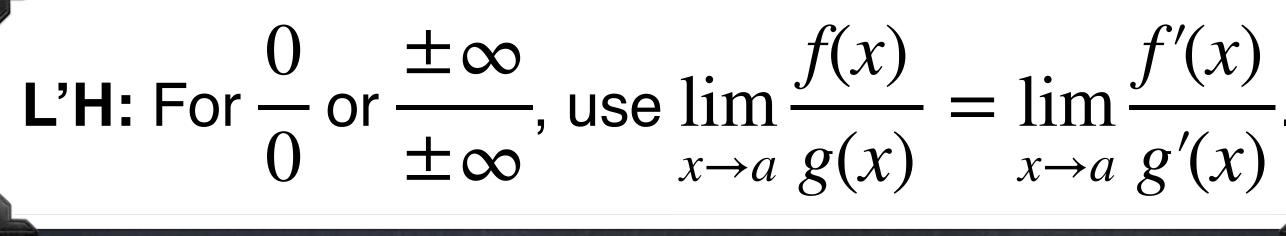
Answer: -S

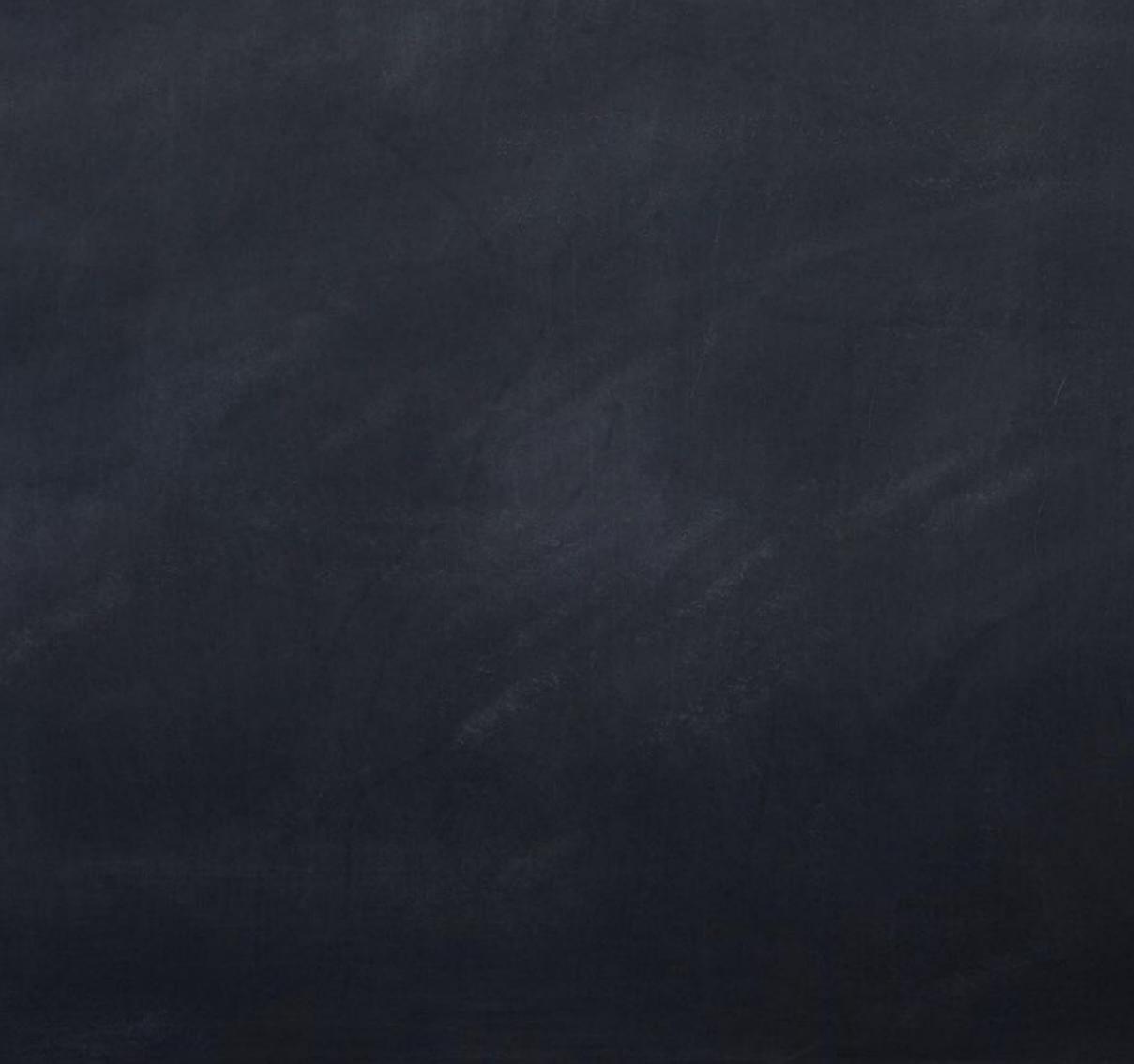




Task 2. Calculate $\lim_{x \to 0} \frac{\sin(x)}{x}$.

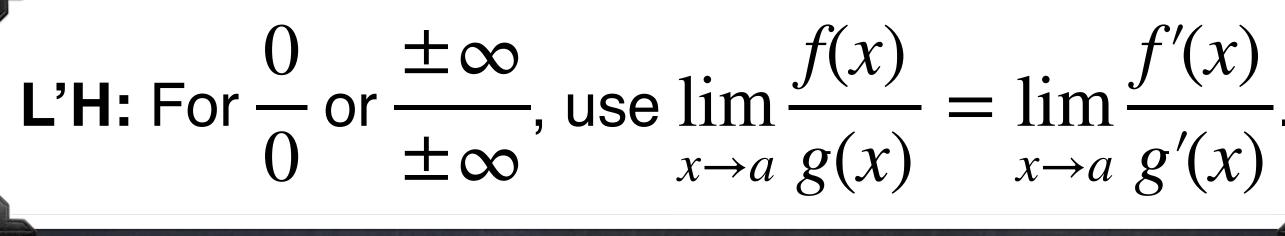
Use L'Hôpital 3 times. Final answer: $\frac{-1}{6}$

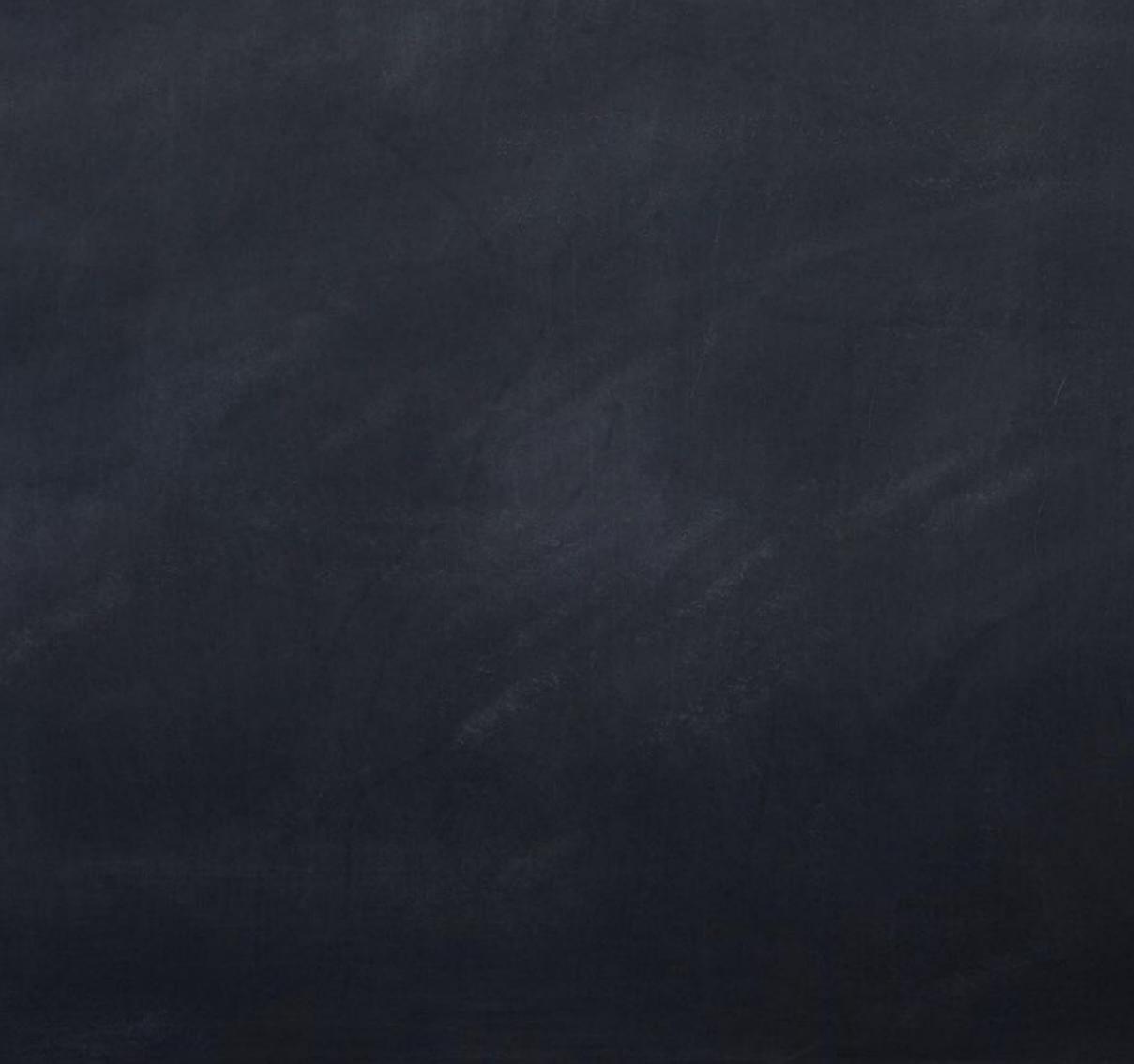




Task 3. Find $\lim_{x \to 4} \frac{4x^2 - 28}{x^2 - 4}$.

ANSWET: 3 (NOT 4)





What is $\frac{d}{dx}[x^5]$ at x = 3? What is $\frac{d}{dx} \left[2^5 \right]$ at x = 3? What is $\frac{d}{dx} \left[2^x \right]$ at x = 3? What is $\frac{d}{dx}[x^x]$ at x = 3?

0

How could we approximate $(x^x)'$ at x = 2 using only a basic calculator?

For a straight line, slope $=\frac{\text{rise}}{\text{run}}=\frac{\Delta y}{\Delta x}$. run

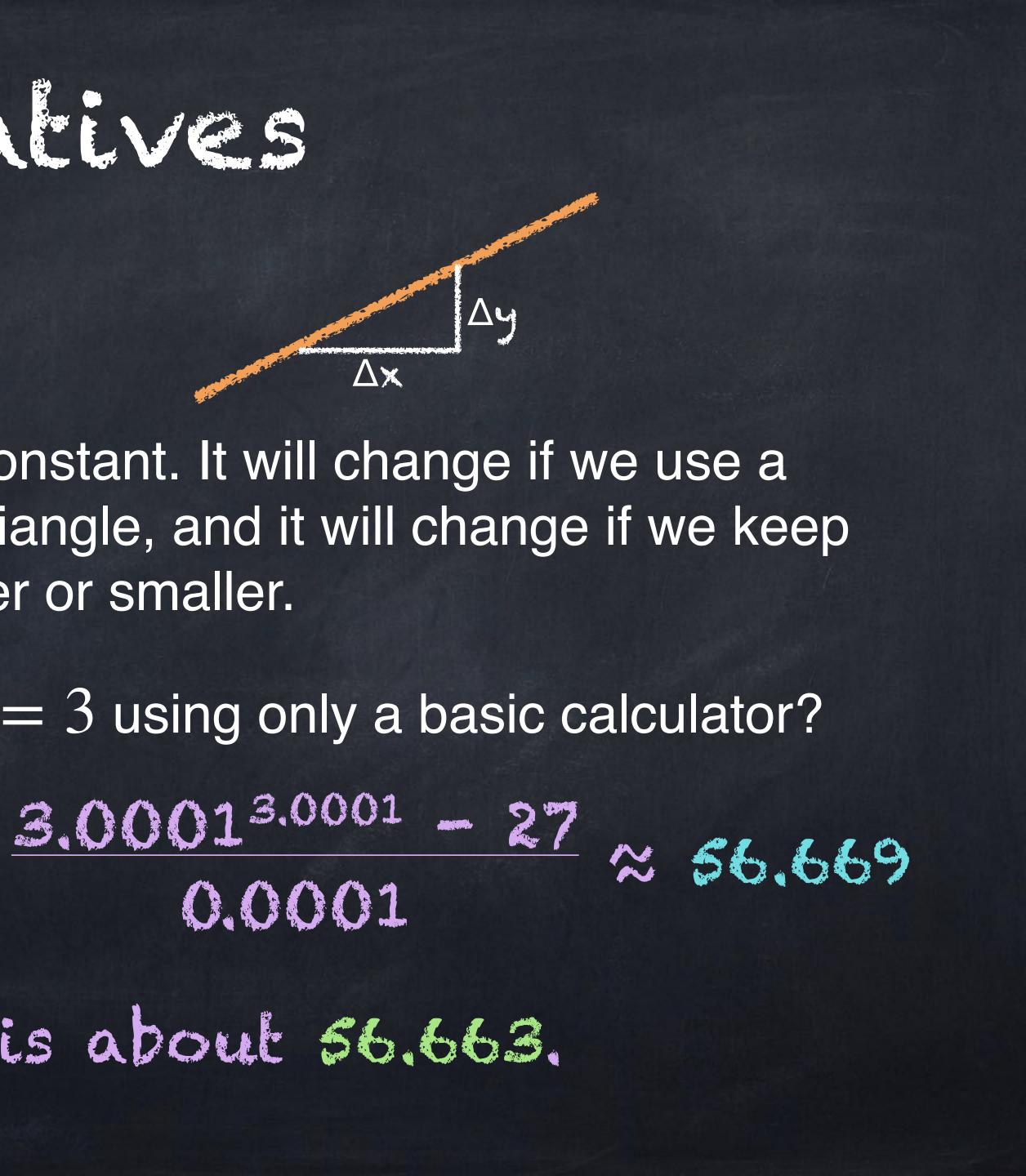
For a curved graph, this fraction is not constant. It will change if we use a the corner the same and make Δx bigger or smaller.

0

 $\frac{3.01^{3.01} - 27}{\sim 57.31}$

The correct derivative is about 56.663.

- different place to start drawing a small triangle, and it will change if we keep
 - How could we approximate $(x^x)'$ at x = 3 using only a basic calculator?



For a straight line, slope $=\frac{\text{rise}}{\text{run}}=\frac{\Delta y}{\Delta x}$.

For a curved graph, this fraction is not constant. It will change if we use a different place to start drawing a small triangle, and it will change if we keep the corner the same and make Δx bigger or smaller.

To find the exact slope for a curved graph, we need $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.

This is why we also write $\frac{dy}{dx}$ for y'.

Technically, f'(x) is defined as

if this limit exists. Using this definition, for example,

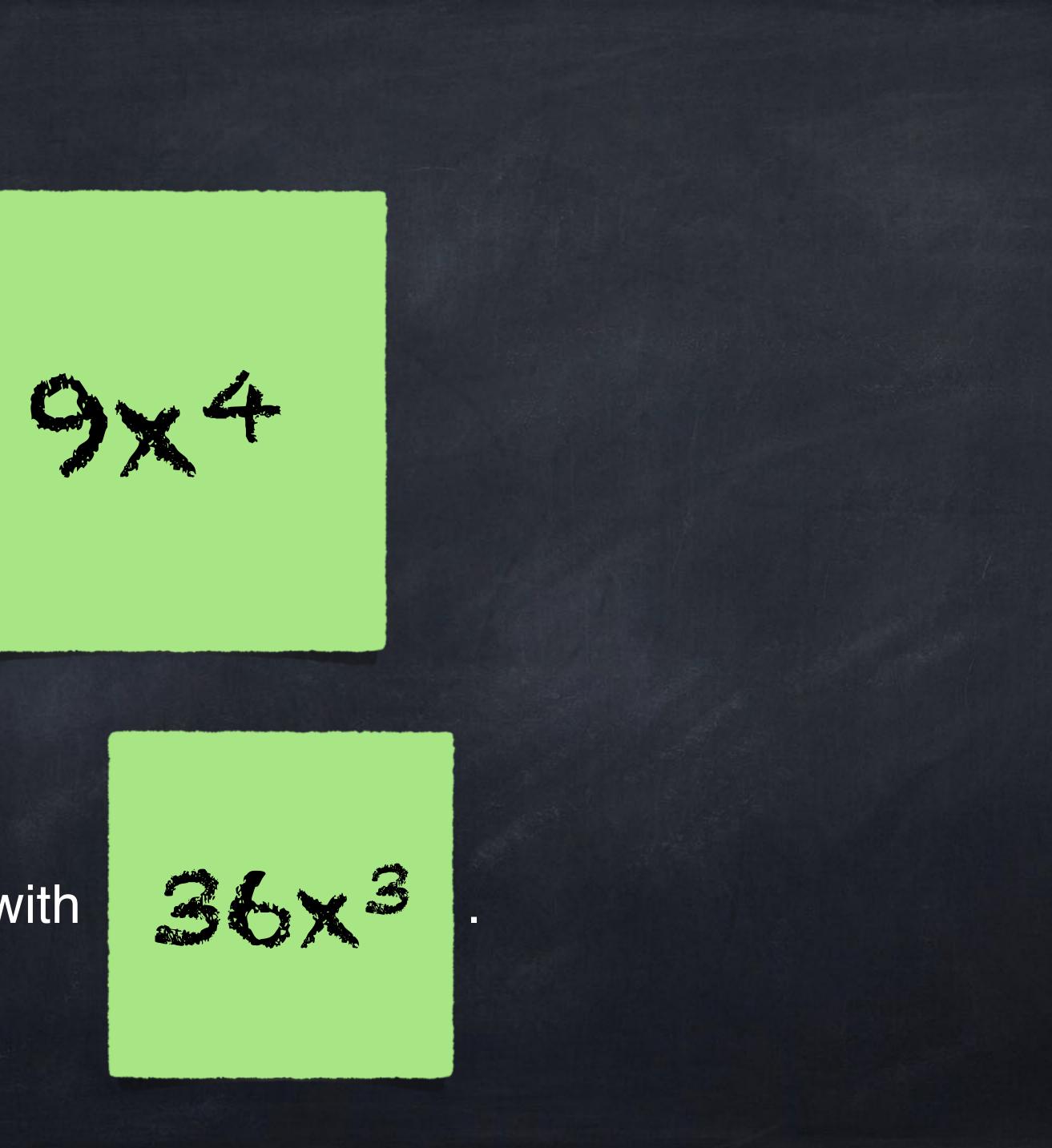
Rule originally was to do $\lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x}$ $\Delta x \rightarrow 0$

Limits and Derivatives

$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$ • the derivative of $2x^3$ at x = 5 is $\lim_{x \to -\infty} \frac{2(5 + \Delta x)^3 - 2(5)^3}{2} = \dots = 150$. $\Delta x \rightarrow 0$ Δx Of course, we know $(2x^3)' = 6x^2$ from the Power Rule, and it's faster to just calculate $6(5)^2 = 6 \cdot 25 = 150$. But the only way people found the Power

If you have the paper

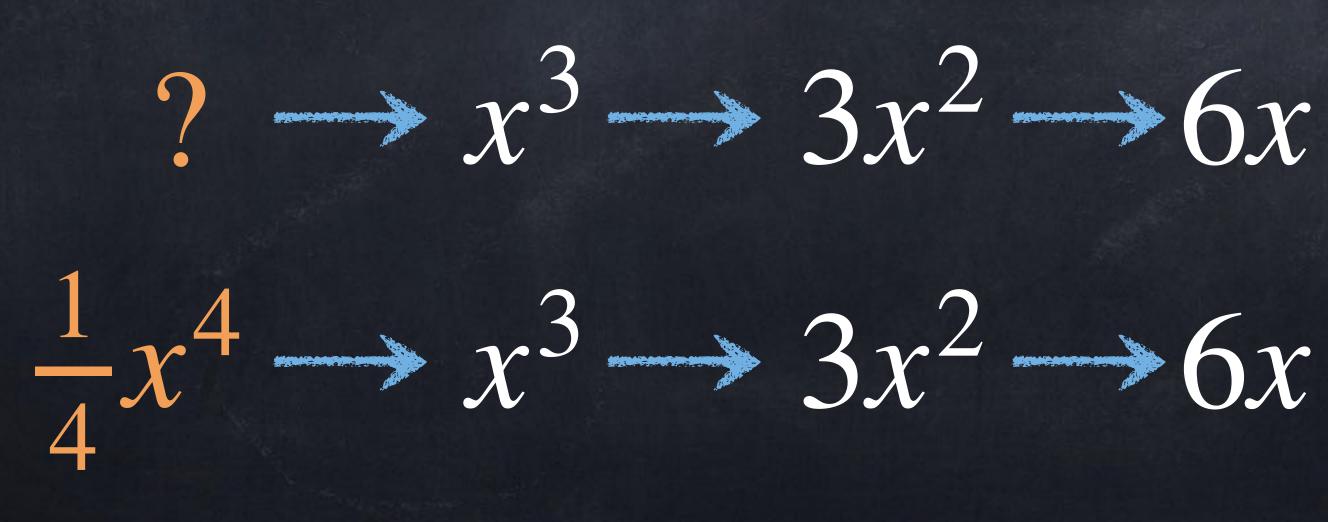
then you should find the person with



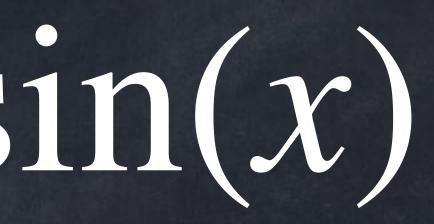
Anti-activatives

The words "anti-derivative" and "integral" are closely related, but for today we will only talk about anti-derivatives.

- The derivative of $9x^4$ is $36x^3$.
- The function $9x^4$ is an anti-derivative of $36x^3$.
- The function $9x^4 7$ is also an anti-derivative of $36x^3$. It's not unique.



$-\cos(x) \longrightarrow \sin(x) \longrightarrow \cos(x)$



So far this semester we have avoided using Logarithms. Now we cannot ignore them!

