Analysis 1, Summer 2024 List 6 Review for Exam 2

- 161. Give an equation for the line through the point (5, 17) with slope $\frac{1}{3}$. One possible answer is $y 17 = \frac{1}{3}(x 5)$. Other correct answers include $y = \frac{x}{3} + \frac{46}{3}$.
- 162. Give an equation for the tangent line to $y = \sqrt{x} + x^3$ at x = 1. $y = 2 + \frac{7}{2}(x-1), \text{ or } y = \frac{7}{2}x - \frac{3}{2}.$

163. Give an equation for the tangent line to $y = e^{4x \cos x}$ at x = 0. y = 4x + 1

164. Use the Quotient Rule and the Product Rule to compute $\frac{\mathrm{d}y}{\mathrm{d}x}$ for $y = \frac{\ln(x)e^x}{x^2}$. $x^2(\ln(x)e^x + \frac{1}{x}e^x) - \ln(x)e^x(2x)$

$$\frac{x(\ln(x)e^{-} + \frac{x}{x}e^{-}) - \ln(x)e^{-}(2x)}{x^{4}} = \frac{e^{-}}{x^{3}} (1 + (x - 2)\ln(x))$$

- 165. Calculate the derivative $\ln(5x)$ in two ways:
 - (a) Use the rule $\frac{d}{dx} [\ln(x)] = \frac{1}{x}$ along with the Chain Rule (here $\ln(5x) = f(g(x))$) with $f(x) = \ln(x)$ and g(x) = 5x). $\frac{1}{5x} \cdot 5$, which is $\frac{1}{x}$.
 - (b) Use algebra to rewrite $\ln(5x) = \ln(x) + \ln(5)$ and then find the derivative of that function. $\frac{1}{x} + 0$, which is $\frac{1}{x}$.
- 166. On what interval(s) is the function $x^3-6x+11$ increasing? $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ On what interval(s) is it concave up? $(0, \infty)$
- 167. Find the x-coordinates of all inflection points of $x^4 + 9x^3 15x^2 + 17$. $x = -5, x = \frac{1}{2}$
- 168. Find the x-coordinates of all inflection points of

$$f(x) = \frac{3}{10}x^5 - 5x^4 + 32x^3 - 96x^2 + 28.$$

x = 2 is the only inflection point. Although f''(4) = 0, the sign of f'' does not change at x = 4 because f''(x) > 0 for all x near 4.

169. If f is a smooth function with

x	-2	-1	0	1	2	3	4
f	3	5	-3	7	8	9	12
f'	2	0	-1	-1	1	3	0
f''	$\begin{array}{c} 3\\ 2\\ 0 \end{array}$	4	1	-1	$\frac{-8}{3}$	0	1

answer the following:

- (a) Does f have a critical point at x = 0? No $f'(0) \neq 0$
- (b) Does f have a local minimum at x = -1? Yes f'(-1) = 0 and f''(-1) > 0
- (c) Does f have a local maximum at x = 4? No local min

- (d) It it possible that f has an absolute minimum at x = -1? No f(x) < f(-1) for x = -2 and x = 0
- (e) It it possible that f has an absolute maximum at x = -1? No f(x) > f(-1) for x = 1, 2, ...
- (f) It it possible that f has an inflection point at x = 3? Yes f''(3) = 0 and f''(2) < 0 < f''(4) (f'' changes sign)
- (g) It it possible that f has an inflection point at x = 4? No $f''(4) \neq 0$
- 170. Find all the critical point(s) of the function

$$f(x) = x^4 - 12x^3 + 30x^2 - 28x$$

and classify each one as a local minimum, local maximum, or neither. x = -1 is neither, x = 7 is a local min

171. Find all the critical point(s) of the function

$$f(x) = x(6-x)^{2/3}$$

and classify each one as a local minimum, local maximum, or neither.

After simplifying, $f'(x) = \frac{18 - 5x}{3(6 - x)^{1/3}}$, so the critical points are $x = \frac{18}{5}$ (where f' is zero) and x = 6 (where f' doesn't exist). The fact that $x = \frac{18}{5}$ is a local max can be found from the First or the Second Derivative Test, but the fact that x = 6 is a local min requires the First D. Test because f''(6) is not defined.

- 172. Calculate the following limits, if they exist:
 - (a) $\lim_{x \to 4} \frac{x^2 x 12}{x^2 2x 8} = \begin{bmatrix} \frac{7}{6} \end{bmatrix}$ from algebra or L'Hospital (b) $\lim_{x \to 4} \frac{x^2 + x - 12}{x^2 - 2x - 8}$ doesn't exist (c) $\lim_{x \to \infty} xe^{-x} = \begin{bmatrix} 0 \end{bmatrix}$ from L'Hospital with $\frac{x}{e^x}$ (d) $\lim_{x \to 0^+} x^2 \ln(x) = \begin{bmatrix} 0 \end{bmatrix}$ from L'Hospital with $\frac{x^2}{\ln(x)}$
 - (e) $\lim_{x \to 1} x^2 \ln(x) = 0$ just from plugging in x = 1
- 173. Compute $\lim_{x\to 0} (\cos 6x)^{1/x^2}$. Hint: First compute $\lim_{x\to 0} \ln((\cos 6x)^{1/x^2})$. $\ln(a^b) = b \ln(a)$

$$\ln\left((\cos 6x)^{1/x^2}\right) = \frac{1}{x^2}\ln(\cos 6x)$$

$$\lim_{x \to 0} \ln\left((\cos 6x)^{1/x^2}\right) = \lim_{x \to 0} \frac{\ln(\cos 6x)}{x^2}$$
$$\stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{\frac{1}{\cos 6x} \cdot (-6\sin(6x))}{2x}$$
$$= \lim_{x \to 0} \frac{-3\sin(6x)}{x\cos(6x)}$$
$$\stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{-18\cos(6x)}{-6x\sin(x) + \cos(6x)}$$
$$= \frac{-18}{0+1} = -18$$

Since $\ln(\text{Answer}) = -18$, we have $\text{Answer} = e^{-18}$.

174. Compute the following indefinite integrals:

(a)
$$\int 6 \, dx = 6x + C$$

(b) $\int (2x+6) \, dx = x^2 + 6x + C$
(c) $\int \frac{8}{x} \, dx = 8 \ln(x) + C$
(d) $\int \frac{8}{q} \, dq = 8 \ln(q) + C$
(e) $\int x^2 \cos(x^3) \, dx = \frac{1}{3} \sin(x^3) + C$
(f) $\int x^2 \cos(x) \, dx = 2x \cos x + (x^2 - 2) \sin x + C$ using parts twice.

175. Compute the following definite integrals:

(a)
$$\int_{1}^{5} (2x+6) dx = 48$$

(b) $\int_{0}^{\pi} \frac{1}{3} \sin(u) du = \frac{2}{3}$
(c) $\int_{1}^{4} (x^{3}+2x-7) dx = \frac{231}{4}$
(d) $\int_{0}^{\pi} 2e^{t} \sin(5t) dt = \frac{5}{13}(e^{\pi}+1)$

176. Find the value of $\int_{-2}^{2} \sqrt{4-x^2} \, dx$. This is the area of half of a disk with radius r = 2, so it is $\frac{1}{2}(\pi r^2) = \frac{1}{2}(4\pi) = 2\pi$.

177. Compute the following integrals of rational functions:

(a)
$$\int \frac{2x+3}{10x^2+30x+40} \, \mathrm{d}x = \frac{1}{10} \ln(x^2+3x+4) + C$$

(b)
$$\int \frac{10x^2 + 30x + 40}{5x} dx = x^2 + 6x + 8\ln(x) + C$$

(c) $\int_1^3 \frac{10x^2 + 30x + 40}{5x} dx = 20 + 8\ln(3)$
 $\stackrel{\text{def}}{\approx} (d) \int \frac{3}{10x^2 + 40} dx = \frac{3}{20} \arctan(\frac{x}{2}) + C$ This task is starred.
You will not be asked about inverse tangent on exams in Summer 2024.

178. Find the area of the domain

$$\{(x,y): 0 \le x \le \pi, \ 0 \le y \le 5\sin(\frac{x}{2})\}.$$
$$\int_0^{\pi} 5\sin(\frac{x}{2}) = \left[-10\cos(\frac{x}{2})\right]_{x=0}^{x=\pi} = \boxed{10}$$

179. Find the area of the domain

$$\{(x,y): 0 \le x \le \pi, \ 0 \le y \le 2x \sin(3x) + 4x\}.$$
$$\int_{0}^{\pi} (2x\sin(3x) + 4x) = \underbrace{\int_{0}^{\pi} 2x\sin(3x) \, dx}_{\text{parts}} + \underbrace{\int_{0}^{\pi} 4x \, dx}_{\text{basic anti-derivative}} = \underbrace{\frac{2}{3}\pi + 2\pi^{2}}_{\text{basic anti-derivative}}$$

180. Find the area of the region bounded by the curves $y = x^2$ and $y = 10 - x^2$. $\int_{-\sqrt{5}}^{\sqrt{5}} \left((10 - x^2) - x^2 \right) dx = \boxed{\frac{40\sqrt{5}}{3}}$

181. Calculate the area of the region bounded by x = 1, y = 1, and $y = \ln(x)$.

Option 1:
$$\int_{1}^{e} (\text{top} - \text{bottom}) \, \mathrm{d}x = \int_{1}^{e} (1 - \ln(x)) \, \mathrm{d}x = \boxed{e - 2}$$

Option 2: $\int_{0}^{1} (\text{right} - \text{left}) \, \mathrm{d}y = \int_{0}^{1} (e^y - 1) \, \mathrm{d}y = \boxed{e - 2}$

 ≈ 182 . Below are two circuits and an equation involving a derivative for each of them. Here R (resistance), C (capacitance), and L (inductance) are all constants, but the voltage V = V(t) is a function of time.

$$- V + RC\frac{\mathrm{d}V}{\mathrm{d}t} = 0 \qquad - V + LC\frac{\mathrm{d}^2V}{\mathrm{d}t^2} = 0$$

- (a) Could the first circuit have $V(t) = 5e^{-t/12}$? yes The second circuit? no
- (b) Could the first circuit have $V(t) = 5(1 e^{-t/12})$? no The second circuit? no
- (c) Could the first circuit have $V(t) = 5\sin(2\pi t)$? no The second circuit? yes
- (d) Could the first circuit have V(t) = 0? yes The second circuit? yes

 $\gtrsim 183$. The "information entropy" *h* of a weighted coin where Heads (Orzel) has probability p_1 and Tails (Reszka) has probability p_2 is

$$-p_1\ln(p_1) - p_2\ln(p_2).$$

Labeling $x = p_1$, we have $p_2 = 1 - x$ (because probabilities must add to 1), so the entropy of a coin with P(Heads) = x is

$$h(x) = -x\ln(x) - (1-x)\ln(1-x).$$

Determine the x-value that gives the maximum of h(x). (This will be the most random kind of coin.)

For $f(x) = -x \ln(x) - (1-x) \ln(1-x)$, we get $f'(x) = \ln(1-x) - \ln(x)$ after simplification (this requires the chain rule for $\frac{d}{dx} \ln(1-x) = \frac{-1}{1-x}$). The maximum of this function occurs when f'(x) = 0

$$\ln(1-x) - \ln(x) = 0$$

$$\ln(1-x) = \ln(x)$$

$$1-x = x$$

$$1 = 2x$$

$$x = \frac{1}{2}$$

184. Give the one hundredth derivative of $x e^x$, that is, $\frac{d^{100}}{dx^{100}} [x e^x]$. $xe^x + 100e^x$

185. For the function

$$f(x) = xe^{-x/4}$$

- (a) Give the equation for the tangent line to y = f(x) at x = -4. y = 2ex + 4e
- (b) Compute the limits $\lim_{x \to 1} f(x) = \frac{e^{-1/4}}{e^{-1/4}}$ and $\lim_{x \to \infty} f(x)$.
- (c) Find the critical point of f(x). (There is only one.) x = 4 and y = 4/e
- (d) Is the point from part (c) a local minimum, local maximum, or neither?
- (e) Find the inflection point of f(x). (There is only one.) x = 8 and $y = 8/e^2$
- (f) Calculate the area of the domain $\{(x, y) : 0 \le x \le 4, 0 \le y \le f(x)\}$. $\int_0^4 f(x) \, \mathrm{d}x = \boxed{16 - \frac{32}{e}}$