## Math 1688

## Algebra and An. Geometry

Lectures: Thursdays 17:05-18:45 with dr Adam Abrams. Zoom

Exercises K01-67a: Th. 15:15-16:55 with dr hab. Oleksii Kulyk Exercises K01-67b: Th. 18:55-20:35 with dr Adam Abrams both in building D-1 room 311a

## Topics

Almost every topic in the class is related in some way to one of the following two kinds of problems:

- For what values of $x$ does

$$
x^{4}-3 x^{3}-12 x-16=0 ?
$$

- For what values of $(x, y, z)$ are

$$
\begin{aligned}
3 x-y+9 z & =8 \\
4 x+2 y & =14 \\
-3 x+6 y-27 z & =-3
\end{aligned}
$$

all true?
While discussing these we will find many other useful ideas.

## Topics

Almost every topic in the class is related following two kinds of problems:

- For what values of $x$ does

$$
x^{4}-3 x^{3}-12 x-16=0 ?
$$

You are allowed to use calculators in this class, for exercises, quizzes, and exams.

You may not communicate with other students during quizzes or exams.

## Topics

Polynomials

- Complex numbers
- Roots zeros of polynomials
- Factoring and remainders

Linear algebra

- Vectors
- Lines and planes
- Systems of linear equations
- Linear maps
- Matrices


## Course website

All course policies can be found at

## http://theadamabrams.com/teaching/1688

Lecture slides and problem sets will also be posted to this site throughout the semester.

## Grading policy

The same grade is used for 1688 W and 1688 C .

- Eight quizzes (5 points each), but the lowest score is ignored!
- Three exams (15 points, 15, 20).
- Activity points (5 points).

This makes $7 \times 5+15+15+20+5=90$ total possible points.

| Points | $[0,45)$ | $[45,54)$ | $[54,63)$ | $[63,72)$ | $[72,81)$ | $[81,90]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade | 2.0 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 |

- More than 4 unexcused absences after this week $\rightarrow$ grade of 2.0 .
- Cheating on exams $\rightarrow$ grade of 2.0 (cannot be improved).


## Grading policy

The same grade is used for 1688 W and 1688C.

- Eight quizzes (5 points each), but the lowest score is ignored!
- Three exams (15 points, 15, 20).
- Activity points (5 points).

This makes $7 \times 5+15+15+20+5=90$ total possible points.

| Points | $[0,45)$ | $[45,54)$ | $[54,63)$ | $[63,72)$ | $[72,81)$ | $[81,90]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade | 2.0 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 |

- More than 4 unexcused absences after this week $\rightarrow$ grade of 2.0 .
- Cheating on exams $\rightarrow$ grade of 2.0 (cannot be improved).


## Accessibiliky

Accessibility and Support Department for People with Disabilities

- Office: building C-13 room 109
- Website: https://ddo.pwr.edu.pl/
- Email: pomoc.n@pwr.edu.pl


## English Language and some polls


poles


Poles

polls

## Course overview

From https://wmat.pwr.edu.pl/studenci/kursy-ogolnouczelniane/karty-przedmiotow/studia-stacjonarne


## Palcerns in mach

Draw a 2 or more points on a circle.
Connect every pair of points with a straight line.

- How many lines did you draw?
- How many regions are in the circle?



## 4 Poines

6 Lines

## 8 Regions

## Patterns in math

| $N$ | 1 | 2 | 3 | 4 | 6 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L$ | 0 | 1 | 3 | 6 | 10 | 16 | 21 | 28 |
| $R$ | 1 | 2 | 4 | 8 | 16 | 31 | 57 | 99 |

Claim: $L=\frac{N(N-1)}{2}$ for all $N$.

## Induction

For what values of $N$ do we know for certain that $N$ dots need $\frac{N(N-1)}{2}$ lines to connect them all?

- $N=1 \nabla$

Now suppose we knew that $k$ dots need $\frac{k(k-1)}{2}$ lines for some $k$.
Then $k+1$ dots would need

$$
\frac{k(k-1)}{2}+k=\frac{k^{2}-k}{2}+\frac{2 k}{2}=\frac{k^{2}+k}{2}=\frac{(k+1) k}{2}
$$

lines: just draw a line from the new dot to each of the $k$ old dots.

## Induction

For what values of $N$ do we know for certain that $N$ dots need $\frac{N(N-1)}{2}$ lines to connect them all?

- $N=1 \nabla$

IF we know our line formula is correct for $k$ dots then we know that it is correct for $k+1$ dots.

- We already know the formula is correct for $N=1$, so now we know it is also correct for $N=2 \mathrm{\nabla}$.
- Now we know $N=2$, so we know $N=3 \nabla$ works too.
- And $N=4 \nabla$, etc.


## ? 0 or 5

In graduate-level or professional mathematics, we always PROVE claims, that is, we explain exactly why they are true (like we just did for the line formula).

In this class, I will often just state a fact and ask you to believe it.

## Binomial formula

You should know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
You could also check that $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.

The Binomial Theorem says that for any whole power $n$ we get

$$
\begin{array}{r}
(a+b)^{n}=\frac{n}{1} a^{n}+\frac{n(n-1)}{2} a^{n-1} b+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-2} b^{2} \\
+\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} a^{n-3} b^{3}+\cdots+n b^{n}
\end{array}
$$

It is possible to prove this (by induction or other explanations), but we will not.

## Types of numbers

- Natural numbers: $0,1,2,3,4, \ldots$
- In some books, only $1,2,3,4, \ldots$
- Integers: ..., $-3,-2,-1,0,1,2,3,4, \ldots$
- Rational numbers are all the numbers that can be written as one integer divided by another. Examples: $\frac{1}{2}, \frac{-2}{3}, 1.5,8,0, \frac{-5}{4}$
- Real numbers are all the values on a number line. Examples:

- Complex numbers - more on these later.


## Solving a single equation

- If $2 x=18$, what must be the value of $x$ ?
- Another way to ask this is "Solve $2 x=18$ for $x$."
- Answer: $x=9$
- If $2 x^{2}=18$, what possible values can $x$ have?
- Another way to ask this is "Solve $2 x^{2}=18$ for $x$."
- Answer: $x=3$ or $x=-3$
- More examples:
- Solve $3=7-x$ for $x$.

| $x=4$ |
| :---: |
| $y=9$ |
| $y=-x / 2$ |

## Solving quadratic equations

- Example 1: Solve $x^{2}+5 x=0$ for $x$.


## Solving quadratic equations

- Example 2: Solve $x^{2}+9 x-6=2 x$ for $x$.


## The Quadratic Formula

The solutions to

$$
a x^{2}+b x+c=0
$$

(when $a \neq 0$ ) are

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

and

$$
x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

## Solving quadratic equations

- Example 3: Solve $x^{2}+5 x+12=0$ for $x$.


## Complex numbers

- Algebra idea: allow square roots of negative numbers
- Geometry idea: 2D number plane



## Complex numbers

- We call the horizontal (left/right) part of a complex number its real part, and we call the vertical (up/down) part its imaginary part.
- We write "Re $z$ " or " $\operatorname{Re}(z)$ " for the real part of the complex number $z$. We write "Im $z$ " or "Im $(z)$ " for the imaginary part of $z$.
Example:

$$
\operatorname{Re}(5-7 i)=5 \quad \operatorname{Im}(5-7 i)=-7
$$

- If your complex numbers are in the form $+_{+} i$, then addition is easy.

$$
(a+b i)+(c+d i)=(a+b)+(c+d) i
$$

Example:

$$
(5-7 i)+(9+4 i)=(5+9)+(-7+4) i=14-3 i
$$

## Multiplication

- What does $5 \times 3$ mean?

- More advanced: no pictures, just $5+5+5$.
- What does $5 \times \frac{1}{3}$ mean? $5 \times 9.2$ ? $7.65 \times(-12)$ ?
- We have changed the meaning of multiplication many times already.
- What does $(3+4 i) \times i$ mean?


## Mulkiplication

From now on, we will say that

$$
7 \text { ? }
$$

There are many good reasons for this, but for now just consider it a new part of the definition of how multiplication works.

People often write " $i=\sqrt{-1}$ ".

## Algebra with complex \#s

Using $i^{2}=-1$ and standard algebra rules, we can can now do lots of computations with complex numbers.

$$
\begin{aligned}
5(3+7) & =(5 \cdot 3)+(5 \cdot 7) \\
a(3+x) & =(a \cdot 3)+a x \\
i(3+2 i) & =i \times 3+i \times 2 i \\
& =3 i+2(i \times i) \\
& =-2+3 i
\end{aligned}
$$

## Algebra with complex \#s

Using $i^{2}=-1$ and standard algebra rules, we can can now do lots of computations with complex numbers.

$$
\begin{aligned}
(5-i)(2+4 i)= & (5)(2)+(5)(4 i)+(-i)(2)+(-i)(4 i) \\
& \quad \text { First Outside Inside Last } \\
= & 10+20 i-2 i+4 \\
= & 14+18 i
\end{aligned}
$$

- If you don't know how to expand $(a+b)(c+d)$ this way, you can use a slower method. But it's good to learn "FOIL".


## Calculators

- Which of the colored points is $z \cdot w$ ?

- A calculator does not help.
- We will answer this later.


## Polar form




- Instead of 4 right and 3 up, we can describe this point as being 5 units away at an angle of $36.87^{\circ}$.


## The Pythagorean

 TheoremIf $a$ and $b$ are lengths of two sides of a right triangle and $c$ is its hypotenuse, then

$$
a^{2}+b^{2}=c^{2}
$$



## - Instead of 4 right and 3 up, we can describe this point as being 5 units away at an angle of $36.87^{\circ}$.

## Measuring angles

- By default, $0^{\circ}$ points to the right, and angles are measured counter-clockwise from there.



## Measuring angles

- Here is the same picture using radians.



## Right triangles


"45-45-90 Eriangle"
"30-60-90 Eriangle"

## Right Eriangles



Memorize these numbers!

## Right triangles



## Modulus and argument

The modulus of a complex number is its distance from 0 . We write $|z|$ for the modulus of a complex number $z$.

## Examples:

- The modulus of $4+3 i$ is 5 .
- $|4+3 i|=5$
- $|2-7 i|=\sqrt{53}$
- $|a+b i|=\sqrt{a^{2}+b^{2}}$ if $a$ and $b$ are real
- $|-8|=8$


## Modulus and argument

The argument of a complex number is the angle between the positive real axis and the line from 0 to that complex number.

We write $\arg (z)$ for the modulus of a complex number $z$.

Examples:

- The argument of $1+i$ is $45^{\circ}$.
- $\arg (1+i)=45^{\circ}$
- The argument of $4+3 i$ is $\arctan \left(\frac{3}{4}\right)$, also written $\operatorname{atan}\left(\frac{3}{4}\right)$ or $\tan ^{-1}\left(\frac{3}{4}\right)$. A calculator can tell us this is approximately 0.6435 , or $36.89^{\circ}$.

