# Mach 16 2 2

Lectures: Thursdays 17:05 - 18:45 with dr Adam Abrams. Zoom

Exercises K01-67a: Th. 15:15 - 16:55 with dr hab. Oleksii Kulyk Exercises K01-67b: Th. 18:55 - 20:35 with dr Adam Abrams both in building D-1 room 311a





Almost every topic in the class is related in *some* way to one of the following two kinds of problems: • For what values of x does  $x^4 - 3x^3 - 12x - 16 = 0?$ • For what values of (x, y, z) are 3x - y + 9z = 84x + 2y = 14-3x + 6y - 27z = -3all true?



While discussing these we will find many other useful ideas.



Almost every topic in the class is related following two kinds of problems: • For what values of x does  $x^4 - 3x^3 - 12x - 16 = 0?$ 

You *are* allowed to use calculators in this class, for exercises, quizzes, and exams.

You may *not* communicate with other students during quizzes or exams.



# Polynomials Complex numbers Roots zeros of polynomials Factoring and remainders





# All course policies can be found at http://theadamabrams.com/teaching/1688

Lecture slides and problem sets will also be posted to this site throughout the semester.



The same grade is used for 1688W and 1688C.

- Eight quizzes (5 points each), but the lowest score is ignored!
- Three exams (15 points, 15, 20).
- Activity points (5 points).

This makes  $7 \times 5 + 15 + 15 + 20 + 5 = 90$  total possible points.

| Points | [0, 45) | [45, 54) | [54, 63) | [63, 72) | [72, 81) | [81, 90] |
|--------|---------|----------|----------|----------|----------|----------|
| Grade  | 2.0     | 3.0      | 3.5      | 4.0      | 4.5      | 5.0      |

More than 4 unexcused absences after this week  $\rightarrow$  grade of 2.0. 0 • Cheating on exams  $\rightarrow$  grade of 2.0 (cannot be improved).



The same grade is used for 1688W and 1688C.

- Eight quizzes (5 points each), but the lowest score is ignored! 0
- Three exams (15 points, 15, 20).
- Activity points (5 points).

This makes  $7 \times 5 + 15 + 15 + 20 + 5 = 90$  total possible points.

| Points | [0, 45) | [45, 54) | [54, 63) | [63, 72) | [72, 81) | [81, 90] |
|--------|---------|----------|----------|----------|----------|----------|
| Grade  | 2.0     | 3.0      | 3.5      | 4.0      | 4.5      | 5.0      |

More than 4 unexcused absences after this week  $\rightarrow$  grade of 2.0. 0 • Cheating on exams  $\rightarrow$  grade of 2.0 (cannot be improved).





# Accessibility and Support Department for People with Disabilities Office: building C-13 room 109 Website: https://ddo.pwr.edu.pl/ Email: pomoc.n@pwr.edu.pl

poles



















### From https://wmat.pwr.edu.pl/studenci/kursy-ogolnouczelniane/karty-przedmiotow/studia-stacjonarne

### FACULTY OF COMPUTER SCIENCE AND MANAGEMENT SUBJECT CARD EBRA AND ANALYTIC GEOMETRY

|                                     | 50     |
|-------------------------------------|--------|
| Name in English                     | ALG    |
| Name in Polish                      | ALGE   |
| Main field of study (if applicable) | Comp   |
| Level and form of studies           | Llovel |

Later

|      | PROGRAM CONTENT                                                                                                                                                                                                                              |       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | Form of classes - lectures                                                                                                                                                                                                                   | Hours |
| Lec1 | Mathematical induction. Newton's binomial formula.                                                                                                                                                                                           | 1     |
| Lec2 | The notion of a matrix. Operations on matrices. Transposition. Examples of matrices (triangular, symmetric, diagonal etc.).                                                                                                                  | 2     |
| Lec3 | The determinant of a matrix. The Laplace expansion. Cofactor of an element of a matrix. Minors. Properties of determinants. Calculation of determinants by elementary row and column operations. Cauchy's theorem. Nonsingular matrix.       | 3     |
| Lec4 | Inverse matrix. Computation of inverse matrix by cofactors or by elementary row operations. Properties of inverse matrices. Matrix equations. Rank of a matrix. Applications of determinants, their connections with rank and invertibility. | 2     |
| Lec5 | Systems of linear equations. Rouché–Capelli theorem. Cramer's formulas. Gaussian elimination. Solving arbitrary systems of linear equations.                                                                                                 | 3     |
| Lash | Complex numbers. Operations on complex numbers in algebraic form. Complex                                                                                                                                                                    | 2     |



EBRA Z GEOMETRIĄ ANALITYCZNĄ

### outer Science

1 full time

- ۲

# will not be on quizzes or exams



Draw a 2 or more points on a circle. Connect every pair of points with a straight line. How many lines did you draw? How many regions are in the circle?





4 Points

6 Lines



# Claim: $L = \frac{N(N-1)}{2}$ for all N.

# Pallerins in malla

| 10 | 15 | 21 | 22 |
|----|----|----|----|
| 16 | 1  | 57 | 99 |







# For what values of *N* do we know for certain that *N* dots need $\frac{N(N-1)}{2}$ lines to connect them all? • N = 1

Now suppose we knew that k dots Then k + 1 dots would need  $\frac{k(k-1)}{2} + k = \frac{k^2 - k}{2}$ 

 $\frac{k(k-1)}{2} + k = \frac{k^2 - k}{2} + \frac{2k}{2} = \frac{k^2 + k}{2} = \frac{(k+1)k}{2}$ lines: just draw a line from the new dot to each of the *k* old dots.

# Now suppose we knew that k dots need $\frac{k(k-1)}{2}$ lines for some k.



lines to connect them all? N = 1

IF we know our line formula is correct for k dots then we know that it is correct for k + 1 dots.

We already know the formula is correct for N = 1, so now we know it 0 is also correct for  $N = 2 \checkmark$ .

Now we know N = 2, so we know  $N = 3 \checkmark$  works too.

• And  $N = 4 \checkmark$ , etc.

# For what values of N do we know for certain that N dots need $\frac{N(N-1)}{2}$



formula).

In this class, I will often just state a fact and ask you to believe it.

### In graduate-level or professional mathematics, we always PROVE claims, that is, we explain exactly why they are true (like we just did for the line

You should know that  $(a + b)^2 = a^2 + 2ab + b^2$ . You could also check that  $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ .

The Binomial Theorem says that for any whole power n we get  $(a+b)^{n} = \frac{n}{1}a^{n} + \frac{n(n-1)}{2}a^{n-1}b + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}a^{n-2}b^{2}$  $+ \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} a^{n-3}b^3 + \dots + nb^n$ 

It is possible to prove this (by induction or other explanations), but we will not.

# BENCHMEAL COMMELA





**Complex** numbers - more on these later.

# Types of humbers

# Rational numbers are all the numbers that can be written as one integer divided by another. Examples: $\frac{1}{2}$ , $\frac{-2}{3}$ , 1.5, 8, 0, $\frac{-5}{4}$ $\frac{-9}{2}$ -3 -2.718... 0 $1\sqrt{2}$ $\sqrt{3}\pi$ 4.8



- If 2x = 18, what must be the value of x?
  - Another way to ask this is "Solve 2x = 18 for x."
  - Answer: x = 9
- If  $2x^2 = 18$ , what possible values can x have?
  - Another way to ask this is "Solve  $2x^2 = 18$  for x."
  - Answer: x = 3 or x = -3
- More examples:
  - Solve 3 = 7 x for x.
  - Solve 2y = 18 for y.
  - Solve x + 2y = 0 for y.

# Solving a single equation

$$x = 4$$
$$y = 9$$
$$= -x/2$$





# Solving quadratic equations Example 2: Solve $x^2 + 9x - 6$ 0

# The Quadratic Formula

The solutions to  $ax^2 + bx + c = 0$ (when  $a \neq 0$ ) are  $x = \frac{-b + \sqrt{b^2 - 4ac}}{2}$ 

and

 $-b - \sqrt{b^2}$ 

2a



| = 2x for $x$ . |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |





### Algebra idea: allow square roots of negative numbers 0 Geometry idea: 2D number plane 0

### -3+2i•



 $-3-2i\bullet$ 



# Complex mumbers

- and we call the vertical (up/down) part its imaginary part.
- We write "Im z" or "Im(z)" for the imaginary part of z. Example:

0

Re(5-7i) = 5 Im(5-7i) = -7(a + bi) + (c + di) = (a + b) + (c + d)i

Example:

If your complex numbers are in the form + *i*, then addition is easy. (5-7i) + (9+4i) = (5+9) + (-7+4)i = 14 - 3i

We call the horizontal (left/right) part of a complex number its real part,

• We write "Re z" or "Re(z)" for the real part of the complex number z.

### What does $5 \times 3$ mean? 0

More advanced: no pictures, just 5 + 5 + 5. 0

• What does  $5 \times \frac{1}{3}$  mean?

We have changed the meaning of multiplication many times already. 0 • What does  $(3 + 4i) \times i$  mean?

# MULLECALCOM



# $5 \times 9.2$ ? $7.65 \times (-12)$ ?

### From now on, we will say that



## There are many good reasons for this, but for now just consider it a new part of the definition of how multiplication works.

People often write " $i = \sqrt{-1}$ ".



# Using $i^2 = -1$ and standard algebra rules, we can can now do lots of computations with complex numbers.

5(3+7) = 0



$$(5 \cdot 3) + (5 \cdot 7)$$

 $a(3 + x) = (a \cdot 3) + ax$ 

 $i(3+2i) = i \times 3 + i \times 2i$  $= 3i + 2(i \times i)$ = -2 + 3i

# Using $i^2 = -1$ and standard algebra rules, we can can now do lots of computations with complex numbers.

## (5-i)(2+4i) = (5)(2) + (5)(4i) + (-i)(2) + (-i)(4i)First Outside Inside Last

= 14 + 18i

If you don't know how to expand (a + b)(c + d) this way, you 0 can use a slower method. But it's good to learn "FOIL".



= 10 + 20i - 2i + 4



### Which of the colored points is $z \cdot w$ ? 0

B A W Z

Im

A calculator does not help. We will answer this later.

E

Re





Instead of 4 right and 3 up, we can describe this point as  $\mathbf{A} = \mathbf{A} + \mathbf{A}$ being 5 units away at an angle of  $36.87^{\circ}$ .



# The Pythagorean Theorem

If *a* and *b* are lengths of two sides of a right triangle and *c* is its hypotenuse, then  $a^2 + b^2 = c^2$ .

Instead of 4 right and 3 up, we can describe this point as being 5 units away at an angle of 36.87°.





By default, 0° points to the right, and angles are 0 measured counter-clockwise from there.









### Here is the same picture using radians.



 $7\pi/6$  $4\pi/3$ 





# "45-45-90 triangle"

# "30-60-90 triangle"



# RECAR ETECHCOLES



2

# Memorize these numbers!



CLEME TEAMOLES

30°

# $\sqrt{3}$ $= \cos(30^{\circ})$

# Memorize these numbers!



The modulus of a complex number is its distance from 0. We write z for the modulus of a complex number z.

Examples:

• The modulus of 4+3i is 5.  $\circ$  |4+3*i*| = 5  $|2 - 7i| = \sqrt{53}$ •  $|a+bi| = \sqrt{a^2+b^2}$  if *a* and *b* are real  $\circ$  |-8|=8



# Modulus and argument

The argument of a complex number is the angle between the positive real axis and the line from 0 to that complex number.

We write  $\arg(z)$  for the modulus of a complex number z.

Examples:

- The argument of 1+i is  $45^{\circ}$ . Ø
- $arg(1 + i) = 45^{\circ}$ 0
- 0

The argument of 4+3i is  $\arctan(\frac{3}{4})$ , also written  $\tan(\frac{3}{4})$  or  $\tan^{-1}(\frac{3}{4})$ . A calculator can tell us this is approximately 0.6435, or 36.89°.