Math 1688

16 December 2021

Warm-up:
 Dot products.

theadamabrams.com/live

Question 1
Compute the dot product

$$
[8,0] \cdot[1,-2]=8
$$

(2) Question 2

Compute the dot product

$$
[3,6] \cdot\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=-9
$$

3) Question 3

Compute the dot product

$$
[3,6] \cdot\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]=
$$

Dimensions

The dimension of a vector (list) is how many numbers are in the list.

- The dimension of the vector $\left[\begin{array}{c}-4 \\ 9\end{array}\right]$ is 2 .
- The dimension of the vector $\left[\begin{array}{c}57 \\ 0 \\ 1 / 2\end{array}\right]$ is 3 .

In order to add, subtract, or take dot products of vectors, they must have the same dimension.

Vector

A vector is...

- ...a list of numbers. $\langle 1,2\rangle$

- ...a point.

Matrix

A matrix is...

- ...a rectangle of numbers.
- ...a list of vectors.
- ...(other ways to think about matrices will come later).

$$
\left[\begin{array}{cc}
5 & 8 \\
-2 & 3
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 0 \\
4 & -4 \\
2 & 12
\end{array}\right] \quad\left[\begin{array}{cccc}
-8 & 19 & 4 & 4 \\
19 & -4 & 2 & 6 \\
15 & 8 & 2 & 16 \\
3 & 14 & 0 & 12
\end{array}\right]
$$

Malrix

One matrix ("may-tricks" [mertriks]), two matrices ("may-trih-sees" [mertrisiz]).

We usually use a capital letter (no $\overrightarrow{ }$ or other mark) for a matrix variable.

$$
A=\left[\begin{array}{ccc}
2 & 2 & 1 \\
3 & -5 & -10
\end{array}\right], \quad M=\left[\begin{array}{cc}
5 & 0 \\
0 & \frac{1}{5}
\end{array}\right]
$$

The entries in a matrix are sometimes given two subscripts:

$$
A=\left[\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right] \text { or } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \text {. }
$$

Row, column, dimensions

In the matrix $\left[\begin{array}{ccc}-1 & 2 & 21 \\ 13 & -1 & -7 \\ 10 & -9 & 13\end{array}\right]$,

- the rows are $\left[\begin{array}{lll}-1 & 2 & 21\end{array}\right]$ and $\left[\begin{array}{lll}13 & -1 & -7\end{array}\right]$ and $\left[\begin{array}{lll}10 & -9 & 13\end{array}\right]$.
- the columns are $\left[\begin{array}{c}-1 \\ 13 \\ 10\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1 \\ -9\end{array}\right]$ and $\left[\begin{array}{c}21 \\ -7 \\ 13\end{array}\right]$.
- the main diagonal is

$$
-1
$$

Row, column, dimensions
In the matrix $\left[\begin{array}{ccc}-1 & 2 & 21 \\ 13 & -1 & -7 \\ 10 & -9 & 13\end{array}\right]$,

- the rows are $\left[\begin{array}{lll}-1 & 2 & 21\end{array}\right]$ and $\left[\begin{array}{lll}13 & -1 & -7\end{array}\right]$ and $\left[\begin{array}{lll}10 & -9 & 13\end{array}\right]$.
- the columns are $\left[\begin{array}{c}-1 \\ 13 \\ 10\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1 \\ -9\end{array}\right]$ and $\left[\begin{array}{c}21 \\ -7 \\ 13\end{array}\right]$.
- the main diagonal is

$$
-1
$$

Row, column, dimensions
In the matrix $\left[\begin{array}{ccc}-1 & 2 & 21 \\ 13 & -1 & -7 \\ 10 & -9 & 13\end{array}\right]$,

- the rows are $\left[\begin{array}{lll}-1 & 2 & 21\end{array}\right]$ and $\left[\begin{array}{lll}13 & -1 & -7\end{array}\right]$ and $\left[\begin{array}{lll}10 & -9 & 13\end{array}\right]$.
- the columns are $\left[\begin{array}{c}-1 \\ 13 \\ 10\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1 \\ -9\end{array}\right]$ and $\left[\begin{array}{c}21 \\ -7 \\ 13\end{array}\right]$.
- the main diagonal is

Row, column, dimensions
The dimension of the vector $\left[\begin{array}{c}-4 \\ 9\end{array}\right]$ is 2 . (or 2×1 if we think of $\begin{array}{r}\text { this as a matrix) }\end{array}$
The dimension of the vector $\left[\begin{array}{c}57 \\ 0 \\ 1 / 2\end{array}\right]$ is 3 . (or 3×1 if we think of $\begin{array}{r}\text { this as a matrix) }\end{array}$
The dimensions of the matrix $\left[\begin{array}{ccc}8 & 5 & -1 \\ 0 & 4 & 4\end{array}\right]$ are 2×3 (aloud: "2 by 3 ").
A square matrix has the same number of rows as columns, like $\left[\begin{array}{cc}0 & 2 \\ -1 & 8\end{array}\right]$.

Matrix calculations

- scalar multiplication

$$
9\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=?
$$

- addition/subtraction

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=?
$$

- matrix times a vector $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}10 \\ 11\end{array}\right]=? \quad$ (note: no \cdot or \times required)
- matrix multiplication
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=$? (note: no - or \times required)

Rule: if $M=A+B$

Students, fill in the six blanks.

$$
\left[\begin{array}{cc}
1 & 3 \\
0 & 2 \\
-1 & 9
\end{array}\right]+\left[\begin{array}{cc}
2 & 4 \\
6 & 7 \\
6 & -4
\end{array}\right]=\left[\begin{array}{cc}
5 & \frac{7}{9} \\
\frac{9}{5} & 5
\end{array}\right]
$$

Rule: if $\vec{w}=A \vec{v}$ then

$$
\begin{aligned}
& w_{i}=(\text { row } i \text { of } A) \cdot \vec{v} \\
& {\left[\begin{array}{cc}
3 & 1 \\
0 & -5
\end{array}\right]\left[\begin{array}{c}
7 \\
5
\end{array}\right]=\left[\begin{array}{c}
26 \\
-25
\end{array}\right]}
\end{aligned}
$$

Rule: if $\vec{w}=A \vec{v}$ then $\vec{W}_{i}=($ row i of $A) \cdot \vec{v}$. dot product
$\star A \vec{v}$ is only possible if the \# of columns of A $=$ the dimension of \vec{v}.

Students, answer the following:

$$
\left[\begin{array}{ll}
3 & 6 \\
8 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=[\begin{array}{c}
-9^{4} \\
8
\end{array} \underbrace{3 \cdot 1+0(-2)}_{8 \cdot 1+6(-2)}
$$

$$
\text { Rule: if } \vec{w}=A \vec{v} \text { then }
$$

$$
\overrightarrow{\mathrm{w}}_{\mathrm{i}}=(\text { row } \mathrm{i} \text { of } A) \cdot \overrightarrow{\mathrm{v}} .
$$

$\star A \vec{v}$ is only possible if the \# of columns of A $=$ the dimension of \vec{v}.

Students, answer the following: $\quad[1,2,3,4] \cdot[0,2,1]$

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 2 & 1 & 0 \\
-1 & 5 & 0 & 0
\end{array}\right]\left[\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
k
\end{array}\right]\right.
$$

Matrix calculations

- scalar multiplication

$$
9\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=?
$$

- addition/subtraction

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=?
$$

- matrix times a vector $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}10 \\ 11\end{array}\right]=? \quad$ (note: no \cdot or \times required)
- matrix multiplication
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=$? (note: no - or \times required)

Rule: if $\vec{w}=A \vec{v}$ then $w_{i}=($ row i of $A) \cdot \vec{v}$.
Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 1: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 16 & 16\end{array}\right]$

Rule: if $\vec{w}=A \vec{v}$ then $w_{i}=($ row i of $A) \cdot \vec{v}$.
Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 1: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 16 & 16\end{array}\right]$

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 2: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}4 & 8 \\ 6 & -3\end{array}\right] \begin{aligned} & \text { impossible! } \\ & 2 \times 3 \\ & \text { because }[4,1,0] \cdot[4,6] \\ & \text { is impossible }\end{aligned}$
The "inner" numbers must agree for $A B$ to exist.
\star The matrix multiplication $A B$ is only possible if (\# of columns of A) = (\# of rows of B).

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
$\underset{\text { again }}{\text { Example 1: }}\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 16 & 16\end{array}\right]$

$$
2 \times 3 \times 2 \times 2
$$

The "inner"/numbers must agree for $A B$ to exist.

The "outer" numbers give the dimensions of $A B$.

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 3: $\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]\left[\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}11 & 8 \\ 1 & 9\end{array}\right]$

Example 4: $\left[\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]=\left[\begin{array}{ll}7 & 17 \\ 0 & 13\end{array}\right]$
\star When multiplying matrices, $A B$ and $B A$ can be different!

