Math 1688

20 December 2021

Warm-up:
 System of equations.

theadamabrams.com/live

Systems of linear equations

A linear equation is an equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b,
$$

where x_{1}, \ldots, x_{n} are variables and a_{1}, \ldots, a_{n}, b are coefficients (usually each a_{i} is a just a constant number, but it could be some expression that does not involve any x_{i}).
A system of linear equations (or just system) is a collection of linear equations with the same variables.

- Some equations may have coefficients of 0 for some variables, so you might not see every variable appear in every equation.
- Often, we will have the same number of variables as equations, but this is not necessary.

systems of linear equations

Examples:

$$
\begin{aligned}
& \left\{\begin{array}{r}
3 x-7 y=4 \\
x+8 y=2
\end{array}\right. \\
& \left\{\begin{aligned}
7 x+2 y+9 z & =-9 \\
7 x+2 y+9 z & =4 \\
-4 x-3 y+5 z & =2
\end{aligned}\right. \\
& \left\{\begin{array}{r}
3 x-7 y=4 \\
x+8 y=2 \\
2 x+5 y=7
\end{array}\right. \\
& \left\{\begin{aligned}
7 x+2 y+9 z & =-9 \\
-4 x-3 y+k z & =2
\end{aligned}\right. \\
& \left\{\begin{aligned}
7 a+2 b+9 c & =-9 \\
8 a+6 c & =0 \\
-4 a-3 b+5 c & =2
\end{aligned}\right. \\
& \left\{\begin{array}{l}
6 x_{1}+2 x_{2}-5 x_{3}+x_{4}=1 \\
5 x_{1}-7 x_{3}+2 x_{4}=3
\end{array}\right.
\end{aligned}
$$

Systems of equations

Finding values or formulas for the variables in a system is called "solving" the system. Any assignment that makes all equations true is a solution.

Example: The only solution to

$$
\left\{\begin{array}{l}
a+b=3 \\
a-b=7
\end{array}\right.
$$

is $(a, b)=(5,-2)$.
Example: $\left\{\begin{array}{l}q^{2}+b=3 \\ q^{2}-b=7\end{array}\right.$ has two solutions: $\quad(a, b)=(\sqrt{5}, 2)$ and $(a, b)=(-\sqrt{5}, 2)$.
not linear

There are many methods to solve systems of linear equations by hand. Some of the most common are

- Substitution
- Elimination
- Matrix inverse
- Cramer's Rule.

Of course, computers can solve equations for us.

Question: How many solutions can a linear system have?

2 equations and 2 variables

$$
\left\{\begin{array} { r }
{ 3 x - 6 y = 4 } \\
{ x + 8 y = 2 }
\end{array} \quad \left\{\begin{array} { l }
{ 3 x - 6 y = 4 } \\
{ 3 x - 6 y = 2 }
\end{array} \quad \left\{\begin{array}{r}
3 x-6 y=3 \\
x-2 y=1
\end{array}\right.\right.\right.
$$

3 equations and 3 variables

$$
\left\{\begin{array}{r}
3 x-6 y+z=7 \\
x+8 y-z=4 \\
2 x+16 y-2 z=1
\end{array}\right.
$$

$$
\left\{\begin{array}{r}
3 x-6 y+z=7 \\
x+8 y-z=4 \\
-x+y+2 z=3
\end{array}\right.
$$

Any linear systems-with any number of variables and any number of equations-will have either

- 0 solutions,
- exactly 1 solution, or
- infinitely many solutions.

For infinity many solutions with 2 variables or 3 variables, the collection of all solutions will form a line or a plane.

There are many methods to solve systems of linear equations by hand.

- Substitution
- Elimination
- Matrix inverse*
- Cramer's Rule*
\} Fewer calculations, but you have to \} be clever about what steps to take. \}ollow the same steps every lime, \} but do a lot of calculations.

It is also possible to determine the number of solutions-zero, one, or infinity-without actually solving the system.

- Determinant*
- Rank
* only when \# of equations = \# of variables

Substitution

Solving a system by substitution:

1. Re-write one equation as " $x_{i}=\ldots$ " for some i.
2. Substitute this expression for x_{i} into other equation and simplify.
3. Repeat $1 \& 2$ until you have a specific value for some x_{j}.
4. Find values for all other variables using previous equations.

This general description might be confusing, but with specific examples it's actually very simple.

- However, deciding which equations to use at each step and which variables to solve for (in what order) can be hard.
- Usually any order will work, but some will be slower or faster.

Substitution

Example: solve $\left\{\begin{aligned} 5 x-2 y & =15 \\ x+4 y & =14\end{aligned}\right.$ using substitution.

Word problems

Two numbers have a sum of 12 and a difference of 4 .

- What are the two numbers?

Word problems

A store sells pizzas in three sizes: small, medium, and large. Buying one of each costs $108 \mathrm{zł}$ total. Two smalls and one large costs $100 \mathrm{zł}$ total, and buying one small and three mediums costs $144 \mathrm{zł}$ total.

- How much does each size cost?

Word problems

For a 30° hill, the vector $[\sqrt{3}, 1]$ is parallel to the hill and the vector $[1,-\sqrt{3}]$ points directly into to the hill. A box on the hill is acted on by the force of gravity $\bar{F}=[0,-4]$.

- Write the force of gravity as a linear combination of the vectors along and into the hill.

Word problems

- Write $[0,-4]$ as a linear combination of $[\sqrt{3}, 1]$ and $[1,-\sqrt{3}]$.

System as a matrix equation

The system of three equations

$$
\left\{\begin{array}{r}
6 x+y+5 z=5 \\
2 y+9 z=3 \\
-x+4 y+18 z=5
\end{array}\right.
$$

can be written as the single equation

$$
\left[\begin{array}{ccc}
6 & 1 & 5 \\
0 & 2 & 9 \\
-1 & 4 & 18
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
5
\end{array}\right]
$$

using matrices.
We usually write this as $A X=B$ and call A the "matrix of coefficients".

