Mach 1688

Tuesday, 4 January

Warm-up: Inverses.
theadamabrams.com/live

Schedule

4.1 Class (today)
13.1 Class

Group B: lecture, then midterm exam (45 min)
20.1 Class
27.1 Class
9.2 Final exam (90 min)
16.2 Final exam (90 min) $-2^{\text {nd }}$ attempt

Online quizzes/exams

Can be done by computers:

- Find the distance between $(4,0,7)$ and $(1,-9,9)$.
- Calculate [1,2] • [3,4].
- Find the angle between the vectors $\vec{u}=[4,2]$ and $\vec{w}=[-4,6]$.
- Multiply $\left[\begin{array}{ccc}-2 & 8 & 3 \\ 11 & 0 & 9\end{array}\right]\left[\begin{array}{c}3 \\ -1 \\ -6\end{array}\right]$.

Cannot:

- Is $[6,1]$ a scalar multiple of $[18,3]$?
- If $|\vec{a}|=8$ and $|\vec{b}|=2$ and
$\vec{a} \cdot \vec{b}=-16$, find the angle between \vec{a} and \vec{b}.
- Are the planes $x+y-z=2$ and $2 x+2 y-4 z=7$ parallel?
- If A is a 3×5 matrix and B is 5×4, what are the dimensions of $A B$?

Previously: matrix multiplication

Previously: matrix multiplication

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
$\underset{\text { again 1: }}{\operatorname{Example}}\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 6 \\ 16 & 16\end{array}\right]$

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 3: $\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]\left[\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}11 & 8 \\ 1 & 9\end{array}\right]$

Example 4: $\left[\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]=\left[\begin{array}{ll}7 & 17 \\ 0 & 13\end{array}\right]$

* When multiplying matrices, $A B$ and $B A$ can be different!

Bad math

- We will never combine $[a, b]$ and $[c, d]$ into $[a c, b d]$.

We will never combine $\left[\begin{array}{l}a \\ b\end{array}\right]$ and $\left[\begin{array}{l}c \\ d\end{array}\right]$ into $\left[\begin{array}{l}a c \\ b d\end{array}\right]$.
We will never combine $[a, b]$ and $\left[\begin{array}{l}c \\ d\end{array}\right]$ into $\left[\begin{array}{l}a c \\ b d\end{array}\right]$.

- There is the dot product: $[a, b] \cdot[c, d]=a c+b d$. The dot product of two vectors is a number. It only exists if the vectors have the same dimension.
- We will never combine $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ into $\left[\begin{array}{ll}a e & b f \\ c g & d h\end{array}\right]$.

Bad math

- We will never combine $[a, b]$ and $[c, d]$ into $[a c, b d]$.
- There is the dot product: $[a, b] \cdot[c, d]=a c+b d$. The dot product of two vectors is a number. It only exists if the vectors have the same dimension.
- We will never combine $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ into $\left[\begin{array}{ll}a e & b f \\ c g & d h\end{array}\right]$.
- There is matrix multiplication: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]$

Whiteboard website

http://whiteboard.fi/math1688

- If you are asked for a room code, it is math1688
- Type your first and last name, then click Join Whiteboard Class
- Click TOGGLE TEACHER WHITEBOARD

$$
\left[\begin{array}{cc}
{\left[\begin{array}{ll}
4 & 5 \\
-2 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
$$

same!

Answes: $\left[\begin{array}{ll}\frac{4}{4} & 5 \\ -2 & 1\end{array}\right]$

Identily and inverse

A square matrix has the same numbers of rows as columns.

- If we use only $n \times n$ matrices, the matrix product $A B$ always exists.

The $n \times n$ identity matrix, written $I_{n \times n}$ or I_{n} just I, is a special matrix such that

$$
A I=A \quad \text { and } \quad I A=A
$$

for all $n \times n$ matrices A.

$$
I_{2 \times 2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . I_{3 \times 3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] . I_{4 \times 4}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

- In a way, $I_{n \times n}$ acts like the number 1 .

Identily and inverse

With numbers, we know $1 x=x$ and we know $x \cdot x^{-1}=x \cdot \frac{1}{x}=1$.
The inverse of matrix A, which we write as A^{-1}, is a matrix that satisfies

$$
A A^{-1}=I .
$$

- Some matrices don't have inverses (similar to 0 for numbers).
- We call such a matrix non-invertible.
- A matrix that is not square cannot have an inverse.
- If A^{-1} does exist, then it is unique and $A^{-1} A=I$ is also true.

Staderts, multiply $\left[\begin{array}{cc}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$.

$$
\begin{gathered}
{\left[\begin{array}{ll}
4 & -2 \\
-3 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]}
\end{gathered}
$$

POZDRALIAM
Answer: $\left[\begin{array}{cc}\frac{-2}{0} & 0 \\ 0 & -2\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]
$$

The "2 by 2 identity matrix" is $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
4 / 2 & -3 / 2 \\
-3 / 2 & 1 /-2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

This means 3 is the "inverse" of $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right]
$$

Identily and inverse

For 2×2 matrices there is a simple formula:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- The number $a d-b c$ is called the determinant of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
- The inverse A^{-1} exists if and only if the determinant of A is not 0 .
- We write $\operatorname{det}(A)$ for the determinant of matrix A. Some textbooks write $|A|$, but determinants can be <0.
For larger square matrices, $\left[\begin{array}{cc}a & \cdots \\ \vdots & \ddots\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}? ? & \cdots \\ \vdots & \ddots\end{array}\right]$ in some way.

Previously: systems of equs

Systems of linear equations

 Examples:$\left\{\begin{array}{r}3 x-7 y=4 \\ x+8 y=2\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{aligned}
7 x+2 y+9 z & =-9 \\
7 x+2 y+9 z & =4 \\
-4 x-3 y+5 z & =2
\end{aligned}\right. \\
& \left\{\begin{aligned}
7 a+2 b+9 c & =-9 \\
8 a+6 c & =0 \\
-4 a-3 b+5 c & =2
\end{aligned}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
3 x-7 y=4 \\
x+8 y=2 \\
2 x+5 y=7
\end{array}\right. \\
& \left\{\begin{array}{c}
7 x+2 y+9 z=-9 \\
-4 x-3 y+k z=2
\end{array}\right. \\
& \left\{\begin{array}{rr}
6 x_{1}+2 x_{2}-5 x_{3}+x_{4}=1 \\
5 x_{1} & -7 x_{3}+2 x_{4}=3
\end{array}\right.
\end{aligned}
$$

There are many methods to solve systems of linear equations by hand.

- Substitution Fewer calculations, but you have to
- Elimination \int be clever about what steps to take.
- Matrix inverse* $\}$ Follow the same steps every time,
- Cramer's Rule* \int but do a lot of calculations.

It is also possible to determine the number of solutions-zero, one, or infinity-without actually solving the system.

- Determinant*
- Rank

$$
\begin{aligned}
& \begin{array}{l}
4 x-2 y=14 \\
2 x+y=15
\end{array} \quad \text { can be writhen as one matrix } \\
& {\left[\begin{array}{rr}
4 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
14 \\
15
\end{array}\right]} \\
& {\left[\begin{array}{rr}
4 & -2 \\
2 & 1
\end{array}\right]^{-7}\left[\begin{array}{rr}
4 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
2 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
14 \\
15
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 / 8 & 1 / 4 \\
-1 / 4 & 1 / 2
\end{array}\right]\left[\begin{array}{rr}
4 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 / 8 & 1 / 4 \\
-1 / 4 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
14 \\
15
\end{array}\right]=}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Students, compute }\left[\begin{array}{cc}
1 / 8 & 1 / 4 \\
-1 / 4 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
14 \\
15
\end{array}\right] \\
& =\left[\begin{array}{c}
7 / 4+15 / 4 \\
-\frac{7}{2}+15 / 2
\end{array}\right]=\left[\begin{array}{c}
21 / 4 \\
8 / 2
\end{array}\right]=\left[\begin{array}{c}
5.5 \\
4
\end{array}\right]
\end{aligned}
$$

$$
\text { Answer: }\left[\begin{array}{l}
5.5 \\
4
\end{array}\right]
$$

$$
\begin{aligned}
& 4 x-2 y=14 \\
& 2 x+y=15
\end{aligned}
$$

$$
x=\frac{17}{2}
$$

$$
y=4
$$

Solving systems using matrices

A system of n linear equations with m variables can be written as a single matrix equation

$$
A X=B \quad \text { or } A \vec{x}=\vec{b},
$$

where we can think of X and B as either $m \times 1$ matrices or as vectors. The $n \times m$ matrix A is called the "coefficient matrix".

- If $n=m$, then A is a square matrix, so it has a determinant $\operatorname{det}(A)$.
- If $\operatorname{det}(A) \neq 0$, then the solution to the system is exactly

$$
X=A^{-1} B
$$

