Math 1688

Thursday, 13 January

Warm-up:
Matrix multiplication.

theadamabrams.com/live

$$
\left.\left.\begin{array}{c}
{\left[\begin{array}{ccc}
14 \\
-31 & -21 & -4 \\
7 / 2
\end{array}\right)} \\
47 \\
-11 / 2
\end{array}-1\right] .\right]\left[\begin{array}{ccc}
1 \\
\left(\begin{array}{ccc}
5 & 2 & -2 \\
1 & 0 & -4 \\
12 & 7 & 14
\end{array}\right]
\end{array}\right.
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
14 & -21 & -4 \\
-31 \\
7 / 2 & 47 & 9 \\
-11 / 2 & -1
\end{array}\right]} \\
{\left[\begin{array}{ccc}
5 & 2 & -2 \\
1 & 0 & -4 \\
12 & 7 & 14
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Last kime: identiky and inverse

The $n \times n$ identity matrix, written $I_{n \times n}$ or I_{n} just I, is

$$
I_{2 \times 2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . I_{3 \times 3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] . I_{4 \times 4}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

- Like " $1 \times n=n$ " for numbers, the matrix I satisfies $I M=M$ for any M.

The inverse of the matrix A, written A^{-1}, is the matrix for which $A^{-1} A=I$.

- This is like $\frac{3}{2}$ for the number $\frac{2}{3}$ because $\frac{3}{2} \times \frac{2}{3}=1$.
- Some matrices do not have an inverse (for numbers, 0 has no inverse).

The determinant of a square matrix M is a number written $\operatorname{det}(M)$.

- If $\operatorname{det}(M)=0$ then M^{-1} does not exist.

Last kime: identity and inverse

For 2×2 matrices there are simple formulas:

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c \\
& \text { and } \\
& \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\end{aligned}
$$

For larger square matrices, $\left[\begin{array}{cc}a & \cdots \\ \vdots & \ddots\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}? ? & \cdots \\ \vdots & \ddots\end{array}\right]$ in some way.

\[

\]

$\left[\begin{array}{ccc}5 & 2 & -2 \\ 1 & 0 & -4 \\ 12 & 7 & 14\end{array}\right]^{-1}=\left[\begin{array}{ccc}14 & -21 & -4 \\ -31 & 47 & 9 \\ 7 / 2 & -11 / 2 & -1\end{array}\right]$
The inverse of $\left[\begin{array}{ccc}5 & 2 & -2 \\ 1 & 0 & -4 \\ 12 & 7 & 14\end{array}\right]$ is $\left[\begin{array}{ccc}14 & -21 & -4 \\ -31 & 47 & 9 \\ 7 / 2 & -11 / 2 & -1\end{array}\right]$.

Applicalions of matrices

Matrices (the plural of "matrix") can be used for

- systems of equations
- geometry / linear transformations
- network/graph analysis
- probability and statistics
- cryptography
- image compression
- physics - optics, electronics, quantum and more.

Solving systems using matrices

The system of three equations

$$
\left\{\begin{aligned}
5 x+2 y-2 z & =4 \\
x-4 z & =2 \\
12 x+7 y+14 z & =5
\end{aligned}\right.
$$

can be written as the single equation

$$
\left[\begin{array}{ccc}
5 & 2 & -2 \\
1 & 0 & -4 \\
12 & 7 & 14
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right]
$$

using matrices.
We usually write this as $A X=B$ and call A the matrix of coefficients.

Solving systems using matrices

$$
A X=B
$$

(A is $n \times n$ matrix)

$$
A^{-1} A X=A^{-1} B
$$

recall $A^{-1} A=I$

$$
I X=A^{-1 B}
$$

recall $I X=X$

$$
X=A^{-1 B}
$$

where I is the $n \times n$ identity
matrix $\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right.$ for $2 \times 2,\left[\begin{array}{cccc}1 & 0 & 0 & \ldots \\ 0 & 1 & 0 & \ldots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$
for larger).

Let's also think about

$$
\begin{aligned}
3 x & =5 \\
\frac{1}{3} \cdot 3 x & =\frac{1}{3} \cdot 6 \\
1 x & =\frac{1}{3} \cdot 6 \\
x & =\frac{1}{3} \cdot 6
\end{aligned}
$$

Solving systems using matrices

Any system of linear eqns corresponds to a single equation $A X=B$. Example:

$$
\left\{\begin{array}{c}
5 x+2 y-2 z=4 \\
x-4 z=2 \\
12 x+7 y+14 z=5
\end{array} \quad \rightarrow \quad\left[\begin{array}{ccc}
5 & 2 & -2 \\
1 & 0 & -4 \\
12 & 7 & 14
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right] .\right.
$$

If the coefficient matrix A is invertible, then we can solve the system as

$$
X=A^{-1} B .
$$

Example:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
5 & 2 & -2 \\
1 & 0 & -4 \\
12 & 7 & 14
\end{array}\right]^{-1}:\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right]=\left[\begin{array}{ccc}
14 & -21 & -4 \\
-31 & 47 & 9 \\
\frac{7}{2} & \frac{-11}{2} & -1
\end{array}\right]\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right]=\left[\begin{array}{c}
-6 \\
15 \\
-2
\end{array}\right] .
$$

Eqn with square matrix

- We can solve the matrix equation $A X=B$ as just

$$
X=A^{-1} B
$$

if we first compute the inverse of the matrix A.

- There is also a direct formula for each variable: writing " A_{i} " for the matrix formed by replacing Column i of matrix A with the single column B, Cramer's Rule says that

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)} .
$$

Eqn with square malrix

Example: solve $\left\{\begin{aligned} 5 x-2 y & =15 \\ x+4 y & =14\end{aligned}\right.$ using an inverse matrix.

$$
\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
15 \\
14
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
15 \\
14
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{4}{22} & \frac{2}{22} \\
\frac{-1}{22} & \frac{5}{22}
\end{array}\right]\left[\begin{array}{l}
15 \\
14
\end{array}\right]=\left[\begin{array}{l}
\frac{4}{22}(15)+\frac{2}{22}(14) \\
\frac{-1}{22}(15)+\frac{5}{22}(14)
\end{array}\right]=\left[\begin{array}{c}
4 \\
5 / 2
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Eqn with square matrix

Example: solve $\left\{\begin{aligned} 5 x-2 y & =15 \\ x+4 y & =14\end{aligned}\right.$ using Cramer's Rule.

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left(\left[\begin{array}{cc}
15 & -2 \\
14 & 4
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]\right)}=\frac{15(4)-(-2) 14}{5(4)-(-2) 1}=\frac{88}{22}=4=x \\
& y=\frac{\operatorname{det}\left(\left[\begin{array}{ll}
5 & 15 \\
1 & 14
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]\right)}=\frac{5(14)-(15) 1}{5(4)-(-2) 1}=\frac{55}{22}=\frac{5}{2}=y
\end{aligned}
$$

Problems with $X=A^{-1 B} \&$ Cramer

This method only possible if

- A has the same number of rows as columns (a "square" matrix)
- and $\operatorname{det}(A) \neq 0$.

Otherwise, A^{-1} does not exist.

If $\operatorname{det}(A)=0$, the system may or may not have solutions.

- $\operatorname{det}\left(\left[\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right]\right)=6(1)-2(3)=0$.
- $\left\{\begin{array}{l}6 x+3 y=10 \\ 2 x+y=5\end{array}\right.$ has solutions but $\left\{\begin{array}{l}6 x+3 y=10 \\ 2 x+y=8\end{array}\right.$ does not.

Number of equs and variables

Only square matrices have determinants. For example, the system

$$
\left\{\begin{array}{r}
4 x+9 y-z=6 \\
2 y+3 z=0
\end{array}\right.
$$

corresponds to the matrix equation

$$
\left[\begin{array}{ccc}
4 & 9 & -1 \\
0 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right],
$$

but there is no determinant for this matrix.

Number of equs and variables

A system of equations is called consistent if at least one solution exists. It is called inconsistent if no solutions exist.

An overdetermined system has more equations than variables.

- Overdetermined systems are usually (but not always) inconsistent.

An underdetermined system has fewer equations than variables.

- Underdetermined systems are usually (but not always) consistent.

Number of eqns and variables

Overdetermined

$$
\left\{\begin{array}{r}
3 x-4 y+2 z=8 \\
x+7 y=2 \\
6 x+y-3 z=1 \\
8 y+z=0 \\
4 x+2 z=3
\end{array}\right.
$$

Underdetermined

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x-4 y+2 z=8 \\
3 x-4 y+2 z
\end{array}=1\right.
\end{aligned}
$$

$$
\left\{\begin{array}{r}
4 x-3 y=1 \\
x+5 y=6 \\
2 x+y=3
\end{array}\right.
$$

Related topics

Linear combinations of vectors
Linear independent* sets of vectors

Systems of linear equations: the set of solutions can be

- nothing
- a single point
- a line
- a plane
- a "hyperplane" (if you have 4 or more variables)

The rank* of the coefficient matrix helps determine which.

* We will define these later.

Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=s \vec{v}+t \vec{w}
$$

for some numbers s, t.

- For more vectors, \vec{u} is a linear combination of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ if

$$
\vec{u}=s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}
$$

for some numbers (scalars) s_{1}, \ldots, s_{n}.

Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=s \vec{v}+t \vec{w}
$$

for some numbers s, t.
Example 1: Write $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ as a linear combination of $\overrightarrow{v_{1}}=\left[\begin{array}{c}5 \\ -2\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{c}3 \\ -9\end{array}\right]$.

Example 2: $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ cannot be written as a linear combination of $\overrightarrow{v_{1}}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$
and $\overrightarrow{v_{2}}=\left[\begin{array}{c}10 \\ 2\end{array}\right]$. Why?
$\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ point in the same direction, so any scalar multiples of them will loo , and so all sums of s.m. of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are parallel co $\langle\delta, 1\rangle$. Since $\langle t, 24\rangle$ is not parallel lo $\langle 5,1\rangle$, il cannot be a sum of scalar multiples of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.

Linear dependence

Equivalent definitions:

- A set of vectors is called linearly dependent if one vector is a linear combination of the others.
- A set $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\}$ is linearly dependent if there exist numbers s_{1}, \ldots, s_{n} not all zero such that

$$
s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}=\overrightarrow{0} .
$$

- Note: some of the s_{i} can be zero, just not all.
- A set is linearly dependent if it is not linearly independent.

Linear independence

Equivalent definitions:

- A set of vectors is called linearly independent if no vector is a linear combination of the others.
- A set $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\}$ is linearly independent if the only solution to

$$
\begin{aligned}
& \quad s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}=\overrightarrow{0} \\
& \text { is } s_{1}=s_{2}=\cdots=s_{n}=0 .
\end{aligned}
$$

- A set is linearly independent if it is not linearly dependent.

Linear (in)dependence

- Linearly dependent: one vector is a linear combination of the others.
- Example: $\left\{\left[\begin{array}{c}5 \\ 24\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is linearly dependent.
- Linearly independent: no vector is a linear combination of the others. - Example: $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is linearly independent.
- Note that a single vector isn't called linearly dependent or independent. This is about sets of vectors.

(b) (a)

- Linearly dependent: one vector is a linear combination of the others.
- Example: $\left[\begin{array}{c}5 \\ 24\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are linearly dependent.
- Linearly independent: no vector is a linear combination of the others.
- Example: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are linearly independent.
- Note that a single vector isn't called linearly dependent or independent. This is about sets of vectors.

Linear (independence

- Example: Determine whether

$$
\left\{\left[\begin{array}{c}
-1 \\
5 \\
7
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
12
\end{array}\right],\left[\begin{array}{c}
-1 \\
14 \\
27
\end{array}\right]\right\}
$$

is linearly dependent or linearly independent.
We should try bo find numbers x and y for which

$$
x\left[\begin{array}{c}
-1 \\
6 \\
7
\end{array}\right]+y\left[\begin{array}{c}
4 \\
-2 \\
12
\end{array}\right]=\left[\begin{array}{c}
-1 \\
14 \\
27
\end{array}\right]
$$

Indeed, we can: $x=3$ and $y=1 / 2$.
So these vectors are linearly dependent.

Linear (in) dependence

- Some facts to notice:

If a set contains the zero vector then it is linearly dependent.
If the vectors are d-dimensional (each is a list of d numbers), then any set of $d+1$ or more vectors will be linearly dependent.

- Examples:
- $\left\{\left[\begin{array}{c}1 \\ -9 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 7\end{array}\right]\right\}$ must be LD. Note $0 \overrightarrow{v_{1}}+5 \overrightarrow{v_{2}}+0 \overrightarrow{v_{3}}=\overrightarrow{0}$.
- $\left\{\left[\begin{array}{c}3 \\ -8\end{array}\right],\left[\begin{array}{l}5 \\ 9\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ must be LD.

Rank

The rank of a matrix is the number of linearly independent columns.

An $n \times m$ matrix can have rank at most $\min (n, m)$.
An $n \times m$ matrix is called full rank if its rank is equal to $\min (n, m)$.

