Math 1688

Thursday, 20 January 2022

Warm-up: Linear combinations.

theadamabrams.com/live

Last time: Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=s \vec{v}+t \vec{w}
$$

for some numbers s, t.

- For more vectors, \vec{u} is a linear combination of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ if

$$
\vec{u}=s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}
$$

for some numbers (scalars) s_{1}, \ldots, s_{n}.

- For one vector, \vec{u} is a linear combination of \vec{v} if $\vec{u}=s \vec{v}$.

Systems - summary so far

Any system of linear equations can be written as

$$
\text { coefficients } \underbrace{A \vec{x}=\vec{b}}_{\text {variables }} \text {. right-hand side }
$$

- If A is square (same \# of rows and cols) and $\operatorname{det}(A) \neq 0$, then the inverse matrix A^{-1} exists and the system has exactly one solution:

$$
\vec{x}=A^{-1} \vec{b} .
$$

- If A is square but $\operatorname{det}(A)=0$, the system has either 0 or infinitely many solutions.
- If A is not square, there is no determinant or inverse.
$\operatorname{rank}(A)$ will help us determine the number of solutions in these cases.

Rank

The rank of a matrix is the maximum number of linearly independent rows.

- Remember that a set of vectors is linearly independent if no vector is a linear combination of the others.
- Remember that a linear combination of vectors is any sum of scalar multiples of the vectors: $a \vec{v}+b \vec{w}+\cdots$
max. \# of lin. indep. rows = max. \# of lin. indep. columns

An $n \times m$ matrix can have rank at most $\min (n, m)$. An $n \times m$ matrix is called full rank if its rank is equal to $\min (n, m)$.

Rank

The rank of a matrix is the maximum number of linearly independent rows (and also the maximum number of linearly independent columns-these will always be the same number!).

Example: What is the rank of $\left[\begin{array}{ccccc}3 & 1 & -9 & 0 & 6 \\ 2 & 0 & 4 & 1 & -3\end{array}\right]$? rank 2

Example: What is the rank of $\left[\begin{array}{cc}-9 & 18 \\ 2 & -4 \\ 5 & -10\end{array}\right]$? rahk 1

Rank

The rank of a matrix is the maximum number of linearly independent rows (and also the maximum number of linearly independent columns -these will always be the same number!).

Example: What is the rank of $\left[\begin{array}{ccc}5 & 2 & 7 \\ 1 & 0 & 1 \\ 12 & 7 & 19\end{array}\right]$? because $\left[\begin{array}{c}7 \\ 1 \\ 19\end{array}\right]=\left[\begin{array}{c}5 \\ 1 \\ 12\end{array}\right]+\left[\begin{array}{l}2 \\ 0 \\ 7\end{array}\right]$
Example: What is the rank of $\left[\begin{array}{ccc}5 & 2 & 7 \\ 1 & 0 & 1 \\ 12 & 7 & 18\end{array}\right]$? because $\left[\begin{array}{c}7 \\ 1 \\ 19\end{array}\right]=a\left[\begin{array}{c}5 \\ 1 \\ 12\end{array}\right]+b\left[\begin{array}{l}2 \\ 0 \\ 7\end{array}\right]$ is impossible

Rank as amount of information

$$
\begin{aligned}
& \{-x+y=1 \\
& \left\{\begin{array}{r}
-x+y=1 \\
x+y=2
\end{array}\right.
\end{aligned}
$$

$$
\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]
$$

has rank 1

$$
\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

$$
\text { has rank } 2
$$

$$
\left\{\begin{aligned}
-x+y & =1 \\
x+y & =2 \\
x+3 y & =5
\end{aligned}\right.
$$

Rank as amount of information

$\left[\begin{array}{llll}1 & 1 & 1 & 6 \\ 1 & 1 & 0 & 3\end{array}\right]$ has rank 2

Can we say anything about $x+y-3 z$?
$-3 x-3 y-3 z=-18$
$(4 x+4 y=12)$

$$
x+y-3 z=-6
$$

Rank as amount of information

$$
\left\{\begin{array}{l}
x+y+z=6 \\
x+y=3
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x+y+z=6 \\
x+y=3 \\
x+y-3 z=-6
\end{array}\right.
$$

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
1 & 1 & 0 & 3
\end{array}\right]
$$ has rank 2

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
1 & 1 & 0 & 3 \\
1 & 1 & -3 & -6
\end{array}\right]} \\
& \text { also has rank } 2
\end{aligned}
$$

No new information!

Rank as amount of information

Rank as amount of information

$$
\begin{array}{lll}
\left\{\begin{array}{l}
x+y+z=6 \\
x+y \\
x+y
\end{array}\right. & \left\{\begin{array}{l}
x+y+z=6 \\
x+y \\
x+y-3 z=-6
\end{array}\right. & \left\{\begin{array}{l}
x+y+z=6 \\
x+y \\
x+5 y-z=5
\end{array}\right.
\end{array}\left\{\begin{array}{cc}
x+y+z=6 \\
x+y & =3 \\
5 x+5 y & =10
\end{array}\right\}
$$

Augmented matrix

For a system $A \vec{x}=\vec{b}$, the matrix A is called the "coefficient matrix". The augmented matrix for the system is the matrix formed by adding column \vec{b} to the matrix A. We write $[A \mid \vec{b}]$ for this matrix.

- Example: For the system

$$
\left\{\begin{array}{l}
4 x+9 y=6 \\
2 y+3 z=0
\end{array}\right.
$$

we have

$$
A=\left[\begin{array}{ll}
4 & 9 \\
2 & 3
\end{array}\right] \text { and }[A \mid \vec{b}]=\left[\begin{array}{lll}
4 & 9 & 6 \\
2 & 3 & 0
\end{array}\right] .
$$

often written

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
4 & 9 & 6 \\
2 & 3 & 0
\end{array}\right]} \\
& \text { th a } \mid \text { before }
\end{aligned}
$$ the last column.

Augmented malrix

For a system $A \vec{x}=\vec{b}$, the matrix A is called the "coefficient matrix". The augmented matrix for the system is the matrix formed by adding column \vec{b} to the matrix A. We write $[A \mid \vec{b}]$ for this matrix.

The Rouché-Capelli Theorem

The system $A \vec{x}=\vec{b}$ is consistent if and only if
$\operatorname{rank}(A)=\operatorname{rank}([A \mid \vec{b}])$. If it is consistent, the collection of all solutions has dimension $n-\operatorname{rank}(A)$, where n is the number of variables.

Augmented malrix

The Rouché-Capelli Theorem

The system $A \vec{x}=\vec{b}$ is consistent if and only if
$\operatorname{rank}(A)=\operatorname{rank}([A \mid \vec{b}])$. If it is consistent, the collection of all solutions has dimension $n-\operatorname{rank}(A)$, where n is the number of variables.

Dimension:

Rank/system examples

Ex 1.

$$
\left\{\begin{array}{rl}
5 x+2 y+7 z=6 \\
x+z=4 & A
\end{array}\right)\left[\begin{array}{ccc}
6 & 2 & 7 \\
1 & 0 & 1 \\
12 & 7 & 18
\end{array}\right] ~\left(\begin{array}{ccc|c}
5 & 2 & 7 & 6 \\
12 x+7 y+18 z=9 & & {[A \mid \vec{B}]=\left[\begin{array}{ccc|c}
1 & 0 & 1 & 4 \\
12 & 7 & 18 & 9
\end{array}\right]}
\end{array}\right.
$$

The coff. and augmented matrices have the same rank, so the system does have at least one solution. The space of all solutions has dimension

$$
\text { (\# of variables) - (rank of } A)=3-3=0 \text {, }
$$

so the set of solutions is just one point.

Rank/system examples

Ex 2

$$
\left\{\begin{array}{rl}
5 x+2 y+7 z=6 & A \\
x+z=4 & =\left[\begin{array}{ccc}
6 & 2 & 7 \\
1 & 0 & 1 \\
12 & 7 & 19
\end{array}\right] \\
12 x+7 y+19 z=9 & {[A \mid \vec{B}]=\left[\begin{array}{ccc|c}
6 & 2 & 7 & 6 \\
1 & 0 & 1 & 4 \\
12 & 7 & 19 & 9
\end{array}\right]}
\end{array}\right.
$$

The coefficient and augmented matrices have different ranks, so there are no solutions to the system.

Rank/system examples

Ex 3.

$$
\left\{\begin{aligned}
5 x+2 y+7 z & =10 \\
x+z & =4 \\
12 x+7 y+19 z & =13
\end{aligned}\right.
$$

$$
A=\left[\begin{array}{ccc}
6 & 2 & 7 \\
1 & 0 & 1 \\
12 & 7 & 19
\end{array}\right]
$$

$$
\operatorname{rank}(A)=2
$$

$$
\operatorname{rank}(A \mid B)=2
$$

$$
[A \mid \vec{b}]=\left[\begin{array}{ccc|c}
6 & 2 & 7 & 10 \\
1 & 0 & 1 & 4 \\
12 & 7 & 19 & 13
\end{array}\right]
$$

The coeff. and augmented matrices have the same rank, so the system does have at least one solution. The space of all solutions has dimension

$$
\text { (\# of variables) }-(\operatorname{rank} \text { of } A)=3-2=1 \text {, }
$$

so the set of solutions is a LINE in 3D space.

Free variables

How can we describe the solutions nicely when there are infinitely many?

A free variable is a variable whose value can be set to anything when describing solutions to a system.

- If $n-\operatorname{rank}(A)=d$, we have d free variables.
- We can choose which of the variables are free.

Free variables
Ex 3 again

$$
\left\{\begin{array}{rlr}
5 x+2 y+7 z & =10 & \operatorname{rank}(A)=2 \\
x+z & =4 & \operatorname{rank}(A \mid B)=2 \\
12 x+7 y+19 z & =13 & (\# \text { of } \operatorname{vars})-\operatorname{rank}(A)=1
\end{array}\right.
$$

We know we have exactly one free variable. We can pick any one of x or y or z for that variable.

With x free, all solutions look like $(x, x-9,4-x)$
With y free: $(x, y, z)=(y+9, y,-y-6)$
With z free: $(x, y, z)=(4-z,-5-z, z)$

Rank and determinank

$$
\left\{\begin{array}{r}
5 x+2 y+7 z=6 \\
x+z=4 \\
12 x+7 y+18 z=9
\end{array} \quad A=\left[\begin{array}{ccc}
5 & 2 & 7 \\
1 & 0 & 1 \\
12 & 7 & 18
\end{array}\right] \quad \begin{array}{c}
\operatorname{det}(A) \neq 0 \\
\operatorname{rank}(A)=3 \\
\operatorname{n-rank}(A)=0
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
5 x+2 y+7 z & =6 \\
x+z & =4 \\
12 x+7 y+19 z & =9
\end{aligned}\right. \\
& \left\{\begin{aligned}
5 x+2 y+7 z & =10 \\
x+z & =4 \\
12 x+7 y+19 z & =13
\end{aligned}\right.
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
5 & 2 & 7 \\
1 & 0 & 1 \\
12 & 7 & 19
\end{array}\right] \quad \operatorname{det}(A)=0
$$

For an $n \times n$ matrix $A, \operatorname{det}(A)=0$ if and only if $\operatorname{rank}(A)<n$.

Right-hand side zeros

Using what we know about determinant, rank, etc., what can we say about a square system where the right-side has only zeros?

$$
\left\{\begin{aligned}
5 x+z & =0 \\
2 x+2 y+3 z & =0 \\
-8 x+2 y+z & =0
\end{aligned}\right.
$$

- $(x, y, z)=(0,0,0)$ is definitely a solution.
- In order to have any other solution, the coefficient matrix must have a determinant of 0 .
- In that case there will be infinitely many solutions (the set of all solutions will form a line or a plane in 3D space).

Right-hand side zeros

Using what we know about determinant, rank, etc., what can we say about a square system where the right-side has only zeros?

- There is at least one solution: all variables could be 0 .

As a vector, this is $\vec{x}=[x, y, \ldots]=\overrightarrow{0}$.

- Can there be other solutions?

$$
\text { If } M \vec{x}=\overrightarrow{0} \text { has solutions other than } \vec{x}=\overrightarrow{0} \text {, then } \operatorname{det}(M)=0
$$

Transformations

There are many other applications of matrices besides systems of equations. One of the most common is visual "transformations":

$$
\left[\begin{array}{l}
x_{\text {new }} \\
y_{\text {new }}
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{\text {old }} \\
y_{\text {old }}
\end{array}\right]
$$

86. For each of the points P_{1} through P_{7}, calculate

$$
P_{i}^{\prime}=\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right] P_{i}
$$

(For example, for $P_{5}^{\prime}=\left[\begin{array}{cc}1 & 1 / 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]$.) Plot the points $P_{1}^{\prime}, \ldots, P_{7}^{\prime}$ on a new grid. Connect $P_{1}^{\prime} \rightarrow P_{2}^{\prime} \rightarrow P_{3}^{\prime} \rightarrow P_{4}^{\prime}$ with line segments, and connect $P_{5}^{\prime} \rightarrow P_{6}^{\prime} \rightarrow P_{7}^{\prime}$.
Congratulations. You can write italic.

Transformations

There are many other applications of matrices besides systems of equations. One of the most common is visual "transformations":

$$
\left[\begin{array}{l}
x_{\text {new }} \\
y_{\text {new }}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{\text {old }} \\
y_{\text {old }}
\end{array}\right] .
$$

Multiplying by a matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ moves points around.

- Could there be a point that doesn't move?
- Could there be a collection of points that, after moveming each point in it, is still the same collection?
- Answers: Yes, but if one point (other than the origin) is fixed then so is an entire line containing it.

Eigenvectors and eigenvalues

For a square matrix A, if we have

$$
A \vec{v}=\lambda \vec{v}
$$

for some number λ and some vector $\vec{v} \neq \overrightarrow{0}$ then

- the vector \vec{v} is called an eigenvector of A, and
- the number λ is called an eigenvalue of A.

Note that if \vec{v} is an eigenvector, any scalar multiple of \vec{v} will also be an eigenvector.

Finding eigenvalues
How could we find the eigenvalues of $\left[\begin{array}{ll}6 & 4 \\ 1 & 3\end{array}\right]$?
We want $\left[\begin{array}{ll}6 & 4 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\lambda\left[\begin{array}{l}x \\ y\end{array}\right]$ for some x, y, λ. So $\left\{\begin{aligned} 6 x+4 y & =\lambda x \\ x+3 y & =\lambda y\end{aligned}\right.$ and so $\left\{\begin{aligned}(6-\lambda) x+4 y & =0 \\ x+(3-\lambda) y & =0\end{aligned}\right.$

If $M \vec{x}=\overrightarrow{0}$ has solutions other than $\vec{x}=\overrightarrow{0}$, then $\operatorname{det}(M)=0$.
For this system to have solutions other than $(x, y)=(0,0)$, we must have $\operatorname{det}\left(\left[\begin{array}{cc}6-\lambda & 4 \\ 1 & 3-\lambda\end{array}\right]\right)=\frac{(6-\lambda)(3-\lambda)-4(1)=0 .}{\text { polynomial } \lambda^{2}-9 \lambda+14=0}$
gives us $\lambda=2$ or $\lambda=7$

Finding eigenvalues

The system

$$
\left\{\begin{aligned}
(a-\lambda) x+\quad b y & =0 \\
c x+(d-\lambda) y & =0
\end{aligned}\right.
$$

has a non-zero solution exactly when $\operatorname{det}\left(\left[\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right]\right)=0$.

In general (including for larger square matrices), the eigenvalues of A are the values of λ for which $\operatorname{det}(A-\lambda I)=0$. Here I is the identity matrix of the same dimensions as A.

Finding eigenvalues

The eigenvalues of A are the values of λ for which $\operatorname{det}(A-\lambda I)=0$.

Algebra proof: if $A \vec{v}=\lambda \vec{v}$ for some $\vec{v} \neq \overrightarrow{0}$ then

$$
\begin{aligned}
A \vec{v} & =I(\lambda \vec{v}) \\
A \vec{v}-(\lambda I) \vec{v} & =\overrightarrow{0} \\
(A-\lambda I) \vec{v} & =\overrightarrow{0} \\
\operatorname{det}(A-\lambda I) & =0
\end{aligned}
$$

Finding eigenvectors
Knowing 7 is an eigenvalue, how do we find the eigenvectors of $\left[\begin{array}{ll}6 & 4 \\ 1 & 3\end{array}\right]$ associated to 7 ?
We want $\left[\begin{array}{ll}6 & 4 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=7\left[\begin{array}{l}x \\ y\end{array}\right]$ for some x, y.
So $\left\{\begin{array}{c}6 x+4 y=7 x \\ x+3 y=7 y\end{array}\right.$ and so $\left\{\begin{array}{r}-x+4 y=0 \\ x-4 y=0\end{array}\right.$.
This system has one free variable. All solutions are of the form $(x, x / 4)$, so any scalar multiple of $[1,1 / 4]$ is an eigenvector.

Finding eigenvectors

Knowing that 7 is an eigenvalue of $\left[\begin{array}{ll}6 & 4 \\ 1 & 3\end{array}\right]$, we get that if \vec{v} is any scalar multiple of $\left[\begin{array}{c}1 \\ 1 / 4\end{array}\right]$ then $\left[\begin{array}{ll}6 & 4 \\ 1 & 3\end{array}\right] \vec{v}=7 \vec{v}$.
Similarly, eigenvalue 2 leads to scalar multiples of $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

- We can say, " $\left[\begin{array}{c}1 \\ 1 / 4\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are the eigenvectors of $\left[\begin{array}{ll}6 & 4 \\ 1 & 3\end{array}\right]$ ".
- But we can really use any scalar multiples. So we could also say " $\left[\begin{array}{l}4 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-29 \\ 29\end{array}\right]$ are the eigenvectors of $\left[\begin{array}{ll}6 & 4 \\ 1 & 3\end{array}\right]$ " and be equally correct.

