Mach 1688 W

Thursday, 14 October
Do this now.

Warm-up:
Calculate i^{2}, i^{3}, i^{4}, i^{5}, i^{6}, and i^{7}.

Warm-up 2:

$$
\left(r \cdot 2^{k}\right)^{n}=r^{n} \cdot 2^{k n}
$$

History of complex \#s

Niccolò Tartaglia 1500-1557
Gerolamo Cardano 1502-1576

History of complex \#s

Gerolamo Cardano 1502-1576

Where is the point

$$
z=8 \cos (\pi / 6)+8 \sin (\pi / 6) i
$$

on the complex plane?

$$
z=8(\sqrt{3} / 2)+8(1 / 2) i
$$

Where is the point

$$
z=8 \cos (\pi / 6)+8 \sin (\pi / 6) i
$$

on the complex plane?

$$
z=8(\sqrt{3 / 2})+8(1 / 2) i
$$

Magnitude and argument

The magnitude (also called modulus or Euclidean norm) of a complex number is its distance from 0 .

- We write $|z|$ for the modulus of a complex number z.
- Formula: $|a+b i|=\sqrt{a^{2}+b^{2}}$ if a and b are real

The argument of a complex number is the angle between the positive real axis and the line from 0 to that complex number.

- We write $\arg (z)$ for the modulus of a complex number z.

Example: $|4 \sqrt{3}+4 i|=8$ and $\arg (4 \sqrt{3}+4 i)=30^{\circ}=\frac{\pi}{6}$.

Example: $|4 \sqrt{3}+4 i|=8$ and $\arg (4 \sqrt{3}+4 i)=30^{\circ}=\frac{\pi}{6}$.

$$
(4 \sqrt{3})+4 i=8 \cos \left(\frac{\pi}{6}\right)+8 \sin \left(\frac{\pi}{6}\right) i
$$

If we can write a complex number $z=a+b i$ as

$$
z=r \cos (\theta)+r \sin (\theta) i
$$

then we get $|z|=r$ and $\arg (z)=\theta$ easily.

Polar nokakion \#1

$r \cos (\theta)+r \sin (\theta) i$ is a useful way to write a complex number z (it makes it easy to find $|z|$ and $\arg z$), and there is a shorter way to write it:

$$
\operatorname{cis}(\theta) \text { means } \cos (\theta)+\underline{i} \sin (\theta)
$$

and so

$$
r \operatorname{cis}(\theta)=r \cos (\theta)+r \sin (\theta) i .
$$

There is another, even shorter way to write this same number. Before showing Polar notakion $\# 2$, let's look at z^{2} in this format.

For

$$
z=8 \cos (\pi / 6)+8 \sin (\pi / 6) i
$$

calculate z^{2}.

$$
\begin{aligned}
z^{2} & =((4 \sqrt{3})+4 i)^{2} \\
& =(4 \sqrt{3})^{2}+2(4 \sqrt{3})(4 i)+(4 i)^{2} \\
& =\left(4^{2} \cdot 3-4^{2}\right)+(2 \cdot 4 \cdot 4 \cdot \sqrt{3}) i \\
& =32+(32 \sqrt{3}) i \\
& =32(1+\sqrt{3}) i \\
& =64\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
z^{2} & =64 \cos (\pi / 3)+64 \sin (\pi / 3) i
\end{aligned}
$$

de Moivre's Formula (version 1)

For any integer n, $(r \cos (\theta)+r \sin (\theta) i)^{n}=r^{n} \cos (n \theta)+r^{n} \sin (n \theta) i$.

What does this formula look like if we use "cis"?

de Moivre's Formula (version 2)

For any integer $n,(r \operatorname{cis}(\theta))^{n}=r^{n} \operatorname{cis}(n \theta)$.

Polar notation \#2

We will write

$$
r e^{i \theta}
$$

instead of $r \operatorname{cis}(\theta)$ or the long version $r \cos (\theta)+r \sin (\theta) i$.
We have many ways to write numbers: $6 \frac{1}{2}=\frac{13}{2}=6.6$.

$$
\text { Now } 1+\sqrt{3} i=2 \cos \left(\frac{\pi}{3}\right)+2 i \sin \left(\frac{\pi}{3}\right)=2 \operatorname{cis}\left(\frac{\pi}{3}\right)=2 e^{\frac{\pi}{3} i} \text {. }
$$

de Moivre's Formula (version 2)

For any integer $n,(r \operatorname{cis}(\theta))^{n}=r^{n} \operatorname{cis}(n \theta)$.

Polar notation \#2

We will write

$$
r e^{i \theta}
$$

instead of $r \operatorname{cis}(\theta)$ or the long version $r \cos (\theta)+r \sin (\theta) i$.

de Moivre's Formula (version 2)

For any integer $n,(r \operatorname{cis}(\theta))^{n}=r^{n} \operatorname{cis}(n \theta)$.
de Moivre's Formula (version 3)
For any integer $n,\left(r e^{\theta i}\right)^{n}=r^{n} e^{(n \theta) i}$.
basic algebra rules

Polar nokalion \#2

Example: Write $5+5 i$ in polar form $5 \sqrt{2} e^{\left(\frac{\pi}{4} i\right)}$.

- Hint: find $|5+5 i|$ and $\arg (5+5 i)$ first.

Multiplication

Multiplying $\left(\frac{-7}{2}+\frac{7 \sqrt{3}}{2} i\right)(2-2 \sqrt{3} i)$ is possible, but it takes a lot of algebra work.

Multiplying $\left(7 e^{\frac{2 \pi}{3} i}\right)\left(4 e^{\frac{-\pi}{3} i}\right)$ is very easy:

$$
(7 \cdot 4) e^{\left(\frac{2 \pi}{3} i+\frac{-\pi}{3} i\right)}=28 e^{\left(\frac{\pi}{3} i\right)}
$$

We can then expand this to $28\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=14+14 \sqrt{3} i$ if we need to.

Multiplication

In general,

$$
\left(r e^{\theta i}\right) \cdot\left(s e^{\phi i}\right)=(r s) e^{(\theta+\phi) i} .
$$

What does this mean visually?

Let's draw a dot • at $z w$ below.

Complex conjugate

The complex conjugate (or just conjugate) of a complex number z is the reflection of z across the real axis.
It is written \bar{z} and spoken as "z bar".

Complex conjugate

The complex conjugate (or just conjugate) of a complex number z is the reflection of z across the real axis.
What are rectangular and polar formulas for conjugates?

$$
\text { - } \overline{a+b i}=a-b i
$$

$$
\overline{r e^{\theta i}}=r e^{-\theta i}
$$

How easy it is to do calculations in rectangular form and in polar form?

		$a+b i$	reqi
real part	$\operatorname{Re}(z)$,	(\%)
imaginary part	$\operatorname{Im}(z)$	(1)	(\%)
modulus	$\|z\|$	(\%)	©
argument	$\arg (z)$	6	©
conjugate	z	©	(1)
sum/difference	$z \pm w$	©	6
product	zw	(\%)	©
quokient	z / ω	6	,

