Math 1688

Thursday, 21 October

Warm-up:
Go to theadamabrams.com/live

Rooks of uniky

What numbers z satisfy $z^{2}=1$?
Answer: 1, -1

What are all the complex numbers z that satisfy $z^{4}=1$?
Note that $z^{2}=1$ or $z^{2}=-1$.

Answer: $1,-1, i,-i$

Rooks of unity
What are all the complex numbers z that satisfy $z^{3}=1$?

$$
\begin{aligned}
& z^{3}=(r e \phi i)^{3}=r^{3} e^{(3 \phi) i}=1 e^{\left(0^{\circ}\right) i} \\
& r^{3}=1 \text { and } 3 \phi=0^{\circ} \text { or } 360^{\circ} \text { or } 720^{\circ} \text { or } 1080^{\circ} \ldots \\
& r=1 \quad \phi 60^{\circ}, \text { so same argument } \\
& \phi=0^{\circ} \text { or } 120^{\circ} \text { or } 240^{\circ} \text { or } 360^{\circ} \ldots \\
& z=1 e^{\left(0^{\circ}\right) i}=0 \\
& z=1 e^{\left(120^{\circ}\right) i}=-1 / 2+\sqrt{3 / 2} i \\
& z=1 e^{\left(240^{\circ}\right) i}=-1 / 2-\sqrt{3 / 2} i
\end{aligned}
$$

Rools of unily

For any natural number n, the solutions to $z^{n}=1$ are exactly

- $z=e^{(2 \pi / n) i}$
- $z=e^{2 \cdot(2 \pi / n) i}$
- $z=e^{3 \cdot(2 \pi / n) i}$
- $z=e^{(n-1) \cdot(2 \pi / n) i}$
- $z=e^{n \cdot(2 \pi / n) i}=e^{2 \pi i}=1$.

These are called the $n^{\text {th }}$ roots of unity.

Real vs. complex

In some ways, real numbers are better.

- Physical measurements
- Ordered: always $x<y$ or $x \geq y$

In some ways, complex \#s are better.

- $n^{\text {th }}$ roots - always exactly n of them
- Rotation and trig functions
- Polynomials - ...

The Fundamental Theorem of Algebra (ver. 1)

For any non-constant polynomial $f(x)$, there is at least one complex solution to $f(x)=0$.

$$
\text { (example: } x^{2}+1=0 \text {). }
$$

Polynomials

A polynomial in the variable x is a function of real numbers that can be described by an expression of the form

$$
0 x^{n}+0 x^{n-1}+\cdots+\theta x^{2}+0 x+0
$$

wheren ≥ 0 is an integer and the emoji are real or complex numbers (called the coefficients).

A real polynomial is one where every coefficient is a real number.
A complex polynomial is one where every coefficient is complex.

- Real numbers are complex numbers $(a+0 i)$, so every real polynomial is also a complex polynomial.

Polynomials

Examples of polynomials:

- $5 x^{3}-27 x+\frac{3}{2}$
- $a x+b$ if the variable is x
- $\sqrt{82} x^{5}-9 x$
- $7 t^{2}-8 t+1$ if the variable is t
- $(x-1)^{3}$
- 12

This can be written as $x^{3}+3 x^{2}+3 x+1$, so it is a polynomial.

Examples that are not polynomials:

- x^{-3}
- $5 x^{2}+3+x^{-1}$
- $\sin (x)$

Roots or zeros

The number c is a zero of the polynomial f if $f(c)=0$. A zero of a polynomial is also called a root of the polynomial.

Sometimes we are interested in particular types of numbers as zeros.

- Example: $2 x^{6}-3 x^{5}-21 x^{4}+56 x^{3}-26 x^{2}-245 x+525$ has
- Integer root: -3
- Rational roots: -3 and $\frac{5}{2}$
- Real roots: $-3, \frac{5}{2}, \sqrt{7}$, and $-\sqrt{7}$
- Complex roots: $-3, \frac{5}{2}, \sqrt{7},-\sqrt{7}, 1+2 i$, and $1-2 i$

Roots or zeros

The number c is a zero of the polynomial f if $f(c)=0$. A zero of a polynomial is also called a root of the polynomial.

We often use the variable z when we care about complex roots. For example,

- "What are the zeros of $x^{2}+1$?"

Depending who you ask, the answer could be either " i and $-i$ " or "none" (there are no zeros).

- "What are the zeros of $z^{2}+1$?"

Answer: i and $-i$.

Roots or zeros

The number c is a zero of the polynomial f if $f(c)=0$. A zero of a polynomial is also called a root of the polynomial.

The Fundamental Theorem of Algebra (ver. 1)

Every non-constant complex polynomial has at least one root.

Finding rooks by hand

Example: Find all roots of $z^{2}+(1+i) z+i$.

Degree

The degree of a polynomial is the highest power of the variable that appears in the polynomial. We write $\operatorname{deg}(f)$ for the degree of $f(x)$.

- Degree 0 example: 9
- Degree 1 example: $x+2$
"conslane"
- Degree 2 example: $2 x^{2}-5 x-12$
- Degree 3 example: $-8 x^{3}$
- Degree 4 example: $x^{4}-7 x+1$
"Linear"*
"quadralic"
"cubic"
"quarkic"

$+-x \div$

We can add two polynomials.

$$
\left(4 x^{2}-3 x\right)+\left(x^{3}+x^{2}+3 x+8\right)=x^{3}+5 x^{2}+8
$$

We can subtract two polynomials.

$$
\left(4 x^{2}-3 x\right)-\left(x^{3}+x^{2}+3 x+8\right)=-x^{3}+3 x^{2}-6 x-8
$$

We can multiply two polynomials.

$$
\left(4 x^{2}-3 x\right)\left(x^{3}+x^{2}+3 x+8\right)=4 x^{5}+x^{4}+9 x^{3}+23 x^{2}-24 x
$$

We can try to divide two polynomials, but sometimes the result is not a polynomial (for example, $1 / \mathrm{x}$ is not a polynomial).

Question: What can we say about $\operatorname{deg}(f+g)$ and $\operatorname{deg}(f \cdot g)$?

$$
\begin{aligned}
& \left(4 x^{2}-3 x\right)+\left(x^{3}+x^{2}+3 x+8\right)=x^{3}+5 x^{2}+8 \\
& \left(4 x^{2}-3 x\right)+\left(-4 x^{2}+7\right)=-3 x+7
\end{aligned}
$$

$\operatorname{deg}(f+g)$ is \leq the maximum of $\operatorname{deg}(f)$ and $\operatorname{deg}(g)$.

$$
\begin{aligned}
& \left(4 x^{2}-3 x\right)\left(x^{3}+x^{2}+3 x+8\right)=4 x^{5}+x^{4}+9 x^{3}+23 x^{2}-24 x \\
& =4 x^{2}\left(x^{3}+x^{2}+3 x+8\right)+(-3 x)\left(x^{3}+x^{2}+3 x+8\right) \\
& =\left(4 x^{6}+\cdots\right)+\left(-3 x^{4}+\cdots\right) \quad x^{a} \cdot x^{b}=x^{a+b} \\
& \quad \operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g) \text { exactly. }
\end{aligned}
$$

Facloring

Natural numbers can be "factored" (re-written as a product of smaller numbers).

- Example: $198=6 \cdot 33$

If $a=b \cdot c$, we say that b is a factor of a.
A natural number other than 1 that cannot be factored is called a prime number. The first several primes are $2,3,5,7,11,13, \ldots$

Facloring

Natural numbers can be "factored" (re-written as a product of smaller numbers).

- Example: $198=6 \cdot 33$

If $a=b \cdot c$, we say that b is a factor of a.
A natural number other than 1 that cannot be factored is called a prime number. The first several primes are $2,3,5,7,11,13, \ldots$

We can uniquely factor a natural number as a product of primes.

- Example: $198=2 \cdot 3^{2} \cdot 11$
(If we expand from naturals to integers, we might need to include -1 .)
- Example: $-1625=-1 \cdot 5^{3} \cdot 13$

Factoring

Polynomials can also be factored. Examples:

- $x^{2}+8 x=x(x+8)$
- $x^{2}+\frac{1}{2} x=x\left(x+\frac{1}{2}\right)$
- $x^{3}-12 x^{2}+41 x-42=\left(x^{2}-5 x+6\right)(x-7)$
- $x^{3}-11 x^{2}+34 x-42=\left(x^{2}-4 x+6\right)(x-7)$

If $f(x)=g(x) \cdot h(x)$, we say that $g(x)$ is a factor of $f(x)$.

Factoring

Polynomials can also be factored.

- If $f(x)=g(x) \cdot h(x)$, we say that $g(x)$ is a factor of $f(x)$.

The Factor Theorem

If $(x-r)$ is a factor of the polynomial $f(x)$, then r is a zero of $f(x)$. If r is a zero of the polynomial $f(x)$, then $(x-r)$ is a factor of $f(x)$.

This means that if we find one zero of $f(x)$-let's call this number r-then the other zeros of $f(x)$ will be zeros of $g(x)=\frac{f(x)}{x-r}$. Note that g has a lower degree than f.

Finding rooks by hand
Example: Find all roots of $x^{3}-13 x+12$, given that 3 is a root. Slow method: algebra rules

$$
\begin{aligned}
\left(x^{3}-13 x+12\right) & =(x-3)\left(a x^{2}+b x+c\right) \text { for some } a, b, c \\
& =a x^{3}+b x^{2}+c x-3 a x^{2}-3 b x-3 c \\
& =a x^{3}+(b-3 a) x^{2}+(c-3 b) x+(-3 c)
\end{aligned}
$$

For $a x^{3}+\cdots$ bo equal equal $1 x^{3}+0 x^{2} \cdots \cdots$, we must have

$$
a=1, \quad b-3 a=0, \quad c-3 b=-13, \quad-3 c=12
$$

This leads $\mathrm{co} a=1, b=3, c=-4$, so

$$
\left(x^{3}-13 x+12\right)=(x-3)\left(x^{2}+3 x-4\right)
$$

The roots of $x^{2}+3 x-4$ are 1 and -4 , so the roots of $x^{3}-13 x+12$ are $1,-4$, and 3 .

Factoring

Polynomials can also be factored.

- If $f(x)=g(x) \cdot h(x)$, we say that $g(x)$ is a factor of $f(x)$.

A polynomial that cannot be factored as a product of non-constant polynomials is called irreducible.

Note $2 x+10$ is irreducible.

$$
2 x+10=2(x+5) \text { is like }-23=(-1)(23)
$$

- Question: How can you tell when you have only irreducible factors?

$$
\begin{aligned}
& x^{3}-12 x^{2}+41 x-42=\left(x^{2}-5 x+6\right)(x-7)=(x-2)(x-3)(x-7) \\
& x^{3}-11 x^{2}+34 x-42=\left(x^{2}-4 x+6\right)(x-7)
\end{aligned}
$$

Irreducible factors

Question: How can you tell when a polynomial is irreducible?

- Any linear polynomial must be irreducible.

$$
\begin{aligned}
& \text { Proof: If } f(x)=a x+b \text { is equal to some product } g(x) h(x) \text {, then } \\
& \operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h) \text {, but we know } \operatorname{deg}(f)=1, \text { and if } \\
& g \text { and } h \text { are not constant then we know } \operatorname{deg}(g) \geq 1, \operatorname{deg}(h) \geq 1 \text {. }
\end{aligned}
$$

- What about quadratics?

Irreducible factors

Question: How can you tell when a polynomial is irreducible?

- Any linear polynomial must be irreducible.
- What about quadratics?
- The roots of $a x^{2}+b x+c$ are $\frac{-b \pm \sqrt{D}}{2 a}$, where $D=b^{2}-4 a c$. The number D is called the discriminant.
- With complex numberss we can always factor quadratics:

$$
a x^{2}+b x+c=\left(x-\frac{-b+\sqrt{D}}{2 a}\right)\left(x-\frac{-b-\sqrt{D}}{2 a}\right) .
$$

But for real numbers we need $D \geq 0$ in order to use \sqrt{D}.

Irreducible faciors

Question: How can you tell when a polynomial is irreducible?
Answer: It depends on whether you allow complex numbers.

- An irreducible real polynomial is either linear or quadratic with negative discriminant.
- An irreducible complex polynomial is linear.

Example:

$$
x^{4}+x^{3}-21 x^{2}+9 x-270=(x-5)(x+6)\left(x^{2}+9\right)
$$

is completely factored as a real polynomial. But if we allow complex numbers then

$$
x^{4}+x^{3}-21 x^{2}+9 x-270=(x-5)(x+6)(x+3 i)((x-3 i a))
$$

Irreducible factors

The Fundamental Theorem of Algebra (ver. 2)

A complex polynomial of degree n can be factored into exactly n irreducible (linear) factors.

Example:

$$
x^{4}+x^{3}-21 x^{2}+9 x-270=(x-5)(x+6)\left(x^{2}+9\right)
$$

but

$$
z^{4}+z^{3}-21 z^{2}+9 z-270=(z-5)(z+6)(z+3 i)(z-3 i)
$$

Irreducible fackors

The Fundamental Theorem of Algebra (ver. 2)

A complex polynomial of degree n can be factored into exactly n irreducible (linear) factors.

- $f(z)$ with degree n can always be factored as

$$
f(z)=a\left(z-c_{1}\right)\left(z-c_{2}\right)\left(z-c_{3}\right) \cdots\left(z-c_{n}\right)
$$

where a is a constant and c_{1}, \ldots, c_{n} are (possibly repeated) roots.

Irreducible factors

The Fundamental Theorem of Algebra (ver. 2)

A complex polynomial of degree n can be factored into exactly n irreducible (linear) factors.

How many prime factors does 34024771 have?
How many irreducible real factors does $x^{7}+\sqrt{2} x^{5}-x^{4}+\frac{2}{9} x-8$ have?
How many irreducible complex factors does $92-\frac{13}{5} z^{7}-\sqrt[3]{\pi} z^{4}+57$ have?

