Math 1688

Thursday, 28 October

Warm-up 1: Expand $(z-4-2 i)(z-4+2 i)$ to the form $\quad z^{2}+\ldots z+\ldots$.

Warm-up 2: What is the remainder of 14 divided by $6 ?$

Last week

The Fundamental Theorem of Algebra (version 2.0)

Every non-constant polynomial of degree n is a product of exactly n linear complex polynomials.

The Factor Theorem

$(x-c)$ is a factor of the polynomial $f(x)$ if and only if $f(c)=0$.

Real coefficients

If $\left(a z^{2}+b z+c\right)$ is a factor of $f(z)$ then $\frac{-b}{2 a}+\frac{\sqrt{D}}{2 a}$ and $\frac{-b}{2 a}-\frac{\sqrt{D}}{2 a}$ are zeros of $f(z)$.

If, also, a and b and c are real numbers, then D is also a real number.

- If $D \geq 0$, the two zeros above are real numbers.
- If $D<0$, then $\sqrt{D}=i \sqrt{|D|}$ and so those zeros

$$
\operatorname{are}\left(\frac{-b}{2 a}\right)+\left(\frac{\sqrt{|D|}}{2 a}\right) i \text { and }\left(\frac{-b}{2 a}\right)-\left(\frac{\sqrt{|D|}}{2 a}\right) i .
$$

Real coefficients

The Conjugate Pairs Theorem

If $a+b i$ is a root of a real polynomial, then $a-b i$ is also a root of that polynomial.

Example: $4+2 i$ is one of the zeros of $f(z)=z^{3}-11 z^{2}+44 z-60$. Knowing this, find all the zeros of f.

Division

- Given two polynomials f and g, we know $f+g, f-g, f \times g$ are always polynomials. What about $f \div g$?
- A fraction with polynomials is called a rational function.
- Examples:

$\frac{9 x^{3}-8 x^{2}}{2 x+1}$
57
dify to polynomial,

$$
\frac{x^{2}-9}{x+3}=\frac{(x+3)(x-3)}{x+3} \leadsto x-3
$$

but sometimes you cannot: $\frac{1}{x}=x^{-1}$ is definitely not a polynomial.

Division

- Integers
- Sometimes when you divide two integers you get an integer.

$$
\frac{12}{3}=4
$$

- Sometimes you don't.

$$
\frac{26}{7}=3+\frac{5}{7}
$$

- Then you have a remainder.

3 remainder 5

- Polynomials
- Sometimes a rational function simplifies to a polynomial.

$$
\frac{2 x^{2}-18}{x+3} \sim 2 x-6
$$

- Sometimes it does not.

$$
\frac{2 x^{2}-18}{x}=2 x+\frac{-18}{x}
$$

- Then you have a remainder.
$2 x$ remainder (-18)

Division

$$
\frac{a}{b}=q+\frac{r}{b}
$$

$$
\frac{f(x)}{g(x)}=Q(x)+\frac{R(x)}{g(x)}
$$

Division of Integers

Given integers a and b with $b>0$, there exist unique integers q and r such that

$$
a=b \cdot q+r
$$

and $0 \leq r<b$.

Division of Polynomials

Given any polynomials $f(x)$ and $g(x)$, there exist unique polynomials $Q(x)$ and $R(x)$ such that

$$
f(x)=g(x) \cdot Q(x)+R(x)
$$

and $R(x)=0$ or $\operatorname{deg}(R)<\operatorname{deg}(g)$.

- Q is called the quotient and R is called the remainder.

Division example

When $x^{3}+2 x^{2}+5$ is divided by $x^{2}-3$, the quotient is $x+2$ and the remainder is $3 x+11$.

- This means $x^{3}+2 x^{2}+5=\left(x^{2}-3\right)(x+2)+(3 x+11)$.
- It's also true that $x^{3}+2 x^{2}+5=\left(x^{2}-3\right)(x+1)+\left(x^{2}+3 x+8\right)$, but the degree of $x^{2}+3 x+8$ is not less than $\operatorname{deg}\left(x^{2}-3\right)=2$.
- You can also think of $\frac{x^{3}+2 x^{2}+5}{x^{2}-3}=(x+2)+\frac{3 x+11}{x^{2}-3}$.

How can we find these q and r ourselves?

Division example
Find the quotient and remainder when $x^{5}+6 x^{4}+9 x^{3}-3 x^{2}-4$ is divided by $x^{2}+2 x+1$

$$
\begin{gathered}
\begin{array}{c}
x^{5}+6 x^{4}+9 x^{3}-3 x^{2}-4 \\
-\left(x^{6}+2 x^{4}+x^{3}\right) \\
4 x^{4}+8 x^{3}
\end{array}=\left(x^{2}+2 x+1\right)\left(x^{3}+4 x^{2}+7\right)+(14 x+3) \\
\text { quotient remainder } \\
\frac{-\left(4 x^{4}+8 x^{3}+4 x^{2}\right)}{-7 x^{2}} \\
\frac{-\left(-7 x^{2}-14 x-7\right)}{14 x+3}
\end{gathered} \begin{aligned}
& \text { Note } x^{5}+2 x^{4}+x^{3} \text { is } \\
& \left(x^{2}+2 x+1\right)\left(x^{3}\right) \text {, where } \\
& x^{3} \text { is just part of } \\
& \text { the quotient. }
\end{aligned}
$$

Division by linear

Ex: Find the remainder when $x^{5}+6 x^{4}+9 x^{3}-3 x^{2}-4$ is divided by $x-1$.

Division by linear

The Remainder Theorem

The remainder when a polynomial $f(x)$ is divided by $(x-a)$ is the value of $f(a)$.

The Factor Theorem

$(x-a)$ is a factor
of $f(x)$ if and only if
$f(a)=0$.
If $(x-a)$ is a factor of f, then the remainder of f divided by $(x-a)$ is zero. The Remainder Thm then tells us $f(a)=0$, though in fact we already knew that from the Factor Theorem.

Division by linear

- Find the remainder when $x^{4}-5 x^{2}+4 x+2$ is divided by $x-3$.

$$
f(3)=34-6\left(3^{2}\right)+4(3)+2=50
$$

- Find the quotient when $x^{4}-5 x^{2}+4 x+2$ is divided by $x-3$.
- We want $x^{4}-5 x^{2}+4 x+2=(x-3) Q(x)+50$.
- The fast way to do this is with "synthetic division".

$$
3 \begin{array}{ccccc}
1 & 0 & -6 & 4 & 2 \\
& 3 & 9 & 12 & 48 \\
1 & 3 & 4 & 16 & 50 \\
x^{3}+3 x^{2}+4 x+16
\end{array}
$$

Repeated roots

- A number r is a root of f (we can also say r is a zero of f) if

$$
f(r)=0 .
$$

- This implies that $(x-r)$ is a factor of $f(x)$.
- That means $f(x)=(x-r) g(x)$ for some polynomial g.
- The multiplicity of the root r is the highest number k for which

$$
f(x)=(x-r)^{k} g(x)
$$

for some polynomial g.

- If $k>1$ we say that r is a repeated root of f.

Roots of a polynomial

$$
y=(x-1)(x+2)
$$

$$
y=(x-1)^{2}(x+2)
$$

Roots of a polynomial

Using synthetic division

- The polynomial $x^{4}+4 x^{3}-18 x^{2}+20 x-7$ has $x=1$ as a root. What is the multiplicity of this root?

Rooks of a polynomial

- Remember that $f(z)$ with degree n can always be factored as

$$
f(z)=a\left(z-c_{1}\right)\left(z-c_{2}\right)\left(z-c_{3}\right) \cdots\left(z-c_{n}\right)
$$

where a is a constant and c_{1}, \ldots, c_{n} are (possibly repeated) roots.

- If we list multiplicities, we have

$$
f(z)=a\left(z-r_{1}\right)^{m_{1}}\left(z-r_{2}\right)^{m_{2}} \cdots\left(z-r_{k}\right)^{m_{k}}
$$

for the k distinct roots, where m_{i} is the multiplicity of the root r_{i}.

Repealed rools

The Fundamental Theorem of Algebra (ver. 3)

A polynomial of degree n has exactly n complex roots, counted with multiplicities.

- Example: $f(z)=z^{7}+11 z^{6}+41 z^{5}+43 z^{4}-69 z^{3}-135 z^{2}+27 z+81$.
- The only numbers for which $f(z)=0$ are $-3,-1$, and 1 .
- Since $f(z)=(z+3)^{4}(z+1)(z-1)^{2}$, we can think of the zeros of f as

$$
-3,-3,-3,-3,-1,1,1
$$

Repeated rooks

How many roots does $97344 x^{2}-327600 x+275625$ have?

- Distinct real roots: Is $D=b^{2}-4 a c$ positive, zero, or negative?

- Distinct complex roots: Is $D=b^{2}-4 a c$ is zero or not?

- Complex roots with multiplicities: 2. ©

