Math 1688

Thursday, 4 November

$$
\text { Warm-up: Re-write } \frac{3}{x+1}+\frac{1}{x} \text { as one fraction. }
$$

theadamabrams.com/live

The "best" way to write a polynomial depends on your goal.

- $x^{2}+3 x+2$ is standard form. It is good for testing whether two polynomials are exactly equal.
- $(x+3) x+2$ is good for plugging in x-values (only one multiplication).
- $\left(x+\frac{3}{2}\right)^{2}-\frac{1}{4}$ is good for graphing (vertex is at $\left(\frac{-3}{2}, \frac{-1}{4}\right)$).
- $(x+1)(x+2)$ is good for finding zeros.

The "best" way to write a number also depends on your goal.

Fractions

How can we describe 35 divided by 12 ?

- 2 remainder 11
- 2.916666...
- $\frac{35}{12}$
- $2+\frac{11}{12}$
- $2+\frac{2}{3}+\frac{1}{4}$
$\frac{35 \text { apples }}{12 \text { people }}=\checkmark \sim$ per person
$\frac{35 \text { apples }}{12 \text { people }}=\checkmark$
per person

Fraclions

$$
\frac{2}{3}+\frac{1}{4}=\frac{2 \times 4}{3 \times 4}+\frac{1 \times 3}{4 \times 3}=\frac{8}{12}+\frac{3}{12}=\frac{11}{12}
$$

The exact same process can be used with problems like the warm-up.

$$
\text { Warm-up: Re-write } \frac{3}{x+1}+\frac{1}{x} \text { as one fraction. }
$$

Rational functions

A rational function is a fraction with polynomials.
The "best" way to write a rational function depends on your goal.

- $\frac{x^{2}-6 x+5}{x^{2}+3 x+2}$ is standard form.
- $\frac{(x-5)(x-1)}{(x+2)(x+1)}$ is good for graphing (numerator tells us the zeros and denominator tells us the vertical asymptotes).
- $1+\frac{-21}{x+2}+\frac{12}{x+1}$ is good for derivatives and integrals (Analysis).

Parkial fractions

We call $\frac{h(x)}{g(x)}$ a partial fraction if $g(x)=(P(x))^{n}$ for some irreducible polynomial $P(x)$ and integer $n \geq 1$ with, $\operatorname{deg}(h)<\operatorname{deg}(P)$.

Examples:

- $\frac{9}{3 x-5}$
- $\frac{9}{(3 x-5)^{2}}$
- $\frac{4 x+2}{x^{2}+9}$

An irreducible polynomial can't be factored as a product of non-constant polynomials.

- Complex \rightarrow only linear
- Real \rightarrow linear or
quadratic with $D<0$

Partial Fraction Decomposition

Any rational function $\frac{f(x)}{g(x)}$ can be written as a sum of a polynomial and some number (possibly 0) of partial fractions.

How?

- First write $\frac{f(x)}{g(x)}=Q(x)+\frac{R(x)}{g(x)}$, where Q and R are the quotient and remainder from last week. Recall $\operatorname{deg}(R)<\operatorname{deg}(g)$.
- Note: If $\operatorname{deg}(f)<\operatorname{deg}(g)$ then $Q(x)=0$.
- Then we need to write $\frac{R(x)}{g(x)}$ as a sum of partial fractions.

Each irreducible factor of $g(x)$ will be used as the denominator of a partial fraction.

Example 1: Write $\frac{f(x)}{g(x)}=\frac{x^{4}+x^{3}-4 x^{2}+1}{x^{2}+x}$ as a sum of a polynomial and some partial fractions.

$$
\begin{aligned}
& \text { First, we need } Q \text { and } R \text {. quotient remainder } \\
& \qquad x^{4}+x^{3}-4 x^{2}+0 x+1=\left(x^{2}+x\right)\left(x^{2}-4\right)+(4 x+1) \\
& \text { So } \frac{x^{4}+x^{3}-4 x^{2}+1}{x^{2}+x}=\left(x^{2}-4\right)+\frac{4 x+1}{x^{2}+x}
\end{aligned}
$$

Now we need lo split $\frac{4 x+1}{x^{2}+x}$ into partial fractions. From the warm-up, we know $\frac{4 x+1}{x^{2}+x}=\frac{3}{x+1}+\frac{1}{x}$.

Answer: $\frac{x^{4}+x^{3}-4 x^{2}+1}{x^{2}+x}=\left(x^{2}-4\right)+\frac{3}{x+1}+\frac{1}{x}$

Example 2: Write $\frac{13 x+9}{x^{2}+3 x-10}$ as a sum of partial fractions.
Since $x^{2}+3 x-10=(x-2)(x+6)$, we are looking for

$$
\begin{aligned}
\frac{13 x+9}{(x-2)(x+6)} & =\frac{A}{x-2}+\frac{B}{x+6} \\
\frac{13 x+9}{(x-2)(x+6)} & =\frac{A}{(x-2)} \frac{(x+6)}{(x+6)}+\frac{B}{(x+6)} \frac{(x-2)}{(x-2)} \\
13 x+9 & =A(x+6)+B(x-2)
\end{aligned}
$$

Example 2: Write $\frac{13 x+9}{x^{2}+3 x-10}$ as a sum of partial fractions.
Since $x^{2}+3 x-10=(x-2)(x+6)$, we are looking for

$$
\begin{aligned}
& \frac{13 x+9}{(x-2)(x+6)}=\frac{A}{x-2}+\frac{B}{x+6} \\
& 13 x+9=A(x+6)+B(x-2) \\
& 13 x+9=A x+6 A+B x-2 B \\
& 13 x+9=(A+B) x+(5 A-2 B) \\
& 4+B=13 \\
&\left\{\begin{array}{rl}
A-2 B & =9
\end{array} \quad \begin{array}{rl}
& A=6 \\
5 A-B=8
\end{array} \rightarrow \frac{5}{x-2}+\frac{8}{x+6}\right.
\end{aligned}
$$

More difficult partial frac.

 If $g(x)=(x-a)(x-b) \cdots$ with distinct linear factors, then writing $\frac{f(x)}{g(x)}$ as a sum of partial fractions is just like our previous example.$$
\begin{aligned}
\frac{f(x)}{2 x^{3}+7 x^{2}-53 x-28}= & \frac{f(x)}{(x-4)(2 x+1)(x+7)} \\
= & \frac{A}{x-4}+\frac{B}{2 x+1}+\frac{C}{x+7} \\
& \text { for some } A, B, C
\end{aligned}
$$

More difficult partial frac.

 "Simple" examples: $\frac{f(x)}{(a x+b)(c x+d) \cdots}=\frac{A}{a x+b}+\frac{B}{c x+d}+\cdots$If g has an irreducible quadratic (degree 2) factor, we need a linear numerator (degree 1) for that fraction:
$\frac{f(x)}{\left(a x^{2}+b x+c\right) \cdots}=\frac{A x+B}{a x^{2}+b x+c}+\cdots$
Partial fraction examples:

- $\frac{9}{3 x-5}$

If g has repeated zeros, we need a partial fr. for each power:

- $\frac{f(x)}{(x-r)^{3} \cdots}=\frac{A}{x-r}+\frac{B}{(x-r)^{2}}+\frac{C}{(x-r)^{3}}+\cdots$
- $\frac{4 x+2}{x^{2}+9}$
- $\frac{9}{(3 x-5)^{2}}$

Example 3: Write $\frac{f}{g}=\frac{x^{2}+3 x-4}{x^{3}-6 x^{2}+4 x-24}$ as a sum of partial fractions.
Hint: $g(6)=0$. $x^{3}-6 x^{2}+4 x-24=(x-6)\left(x^{2}+4\right)$, so we are looking for

$$
\begin{aligned}
\frac{x^{2}+3 x-4}{(x-6)\left(x^{2}+4\right)} & =\frac{A}{x-6}+\frac{B x+C}{x^{2}+4} \\
x^{2}+3 x-4 & =A\left(x^{2}+4\right)+(B x+C)(x-6) \\
x^{2}+3 x-4 & =A x^{2}+4 A+B x^{2}+C x-6 B x-6 C \\
x^{2}+3 x-4 & =(A+B) x^{2}+(C-6 B) x+(4 A-6 C)
\end{aligned}
$$

Example 3: Write $\frac{f}{g}=\frac{x^{2}+3 x-4}{x^{3}-6 x^{2}+4 x-24}$ as a sum of partial fractions.
Hint: $g(6)=0$.
$x^{3}-6 x^{2}+4 x-24=(x-6)\left(x^{2}+4\right)$, so we are looking for

$$
\begin{aligned}
& \frac{x^{2}+3 x-4}{(x-6)\left(x^{2}+4\right)}=\frac{A}{x-6}+\frac{B x+C}{x^{2}+4}=\frac{5 / 4}{x-6}+\frac{\frac{-1}{4} x+\frac{3}{2}}{x^{2}+4} \\
& \text { Answer } \\
& 1 x^{2}+3 x-4=(A+B) x^{2}+(C-6 B) x+(4 A-6 C) \\
& \left\{\begin{array}{l}
A+B=1 \\
C-6 B=3 \\
4 A-6 C=-4
\end{array} \longrightarrow \quad \begin{array}{l}
A=5 / 4 \\
B=-1 / 4 \\
C=3 / 2
\end{array}\right.
\end{aligned}
$$

Your turn!

Write $\frac{f(x)}{g(x)}=\frac{x+14}{x^{2}-2 x-8}$ as a sum of partial fractions.

Try it yourself at
https://itempool.com/theadamabrams/c/l7s7UUu8WrU
\leftarrow Answer at itempool.com/theadamabrams/live

包 60 LIVE

\square Collect student names
f checked, students will be required to enter their names, which will then be associated with their responses

Show advanced settings

Which topic(s) do you find most confusing? Do not select more than 3

\square high school fractions, square roots, algebra, etc.
$\square \cos$, sin, radians (like $\pi / 6$)
\square complex numbers in rectangular form
\square complex numbers in polar form
\square complex numbers on a graph/picture
\square irreducible polynomials
\square multiplicity of a zero
\square polynomial quotient and remainder
\square partial fractions
\square nothing (because everything is easy)
(1) Unstarted - (2) Accepting answers - Results

Which topic(s) do you think you understand well?
\square complex numbers in rectangular form
\square complex numbers in polar form
complex numbers on a graph/picture
\square irreducible polynomials
\square multiplicity of a zero
\square polynomial quotient and remainder
\square partial fractions
(1) Unstarted Accepting answers Results

Fun (?) ackiviky

Activity 0 :

Step 1. Pick a complex number z.
Step 2. $z_{\text {new }}=\left(z_{\text {old }}\right)^{2}$.
Step 3. Repeat Step 2 forever.

Activity -1:

Step 1. Pick a complex number z.
Step 2. $z_{\text {new }}=\left(z_{\text {old }}\right)^{2}-1$.
Step 3. Repeat Step 2 forever.

What happens? Does your list of new z-values get very big? Very close to zero? Neither? It depends on your starting number.

Fun (?) ackiviky

Activity 0 :

Step 1. Pick a complex number z.
Step 2. $z_{\text {new }}=\left(z_{\text {old }}\right)^{2}$.
Step 3. Repeat Step 2 forever.

Activity -1:

Step 1. Pick a complex number z.
Step 2. $z_{\text {new }}=\left(z_{\text {old }}\right)^{2}-1$.
Step 3. Repeat Step 2 forever.

Green points are where z is close to 0 after many loops.

This not part of Math 1688. It's just an example of how there is a lot more to complex numbers and polynomials than we can cover in this class.

