Math 1688

18 November 2021

Warm-up:
 What have you learned about vectors from other classes?

theadamabrams.com/live

This class

Complex numbers

- Rectangular form
- Polar form

Polynomials

- Factoring
- Irreducible polyn.
- Roots (zeros)
- Multiplicities
- Quotient and remainder

Vectors
Matrices

ـ.
Linear algebra

The word "vector" can mean many things.
At times we will think of a vector as

- a list.
- a point.
- an arrow with its tail at the origin.
- an arrow with its tail anywhere.

There is another option:

- an element of an abstract vector space,
youtu.be/fNk_zzaMoSs (3B1B)
 but we won't use that idea of a vector in this class.

Arrows
A vector is a list of numbers.

- We can write the same list of numbers in many formats. For example,

$$
(5,3,8) \quad\langle 5,3,8\rangle \quad\left[\begin{array}{lll}
5 & 3 & 8
\end{array}\right]
$$

are all exactly the same vector.

- Each numbers is a component of the vector.
- For $[5,3,8$], the " 1 st component" is 5 , the " 2 nd component" is 3 , etc.
- We often label the components with subscripts: $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$. But sometimes we instead label a whole vector this way: $\overrightarrow{u_{1}}$ and $\overrightarrow{u_{2}}$.

Vectors as Points

A vector is a point (a dot) in 2D or 3D space.

Vectors as
 Arrows

A vector is something that has a magnitude and a direction.
In other words, it is an arrow.

Vectors as
 Arrows

A vector is something that has a magnitude and a direction.
In other words, it is an arrow.

Vectors as

A vector is something that has a magnitude and a direction. In other words, it is an arrow.

Vectors as

A vector is something that has a magnitude and a direction. In other words, it is an arrow.

 Arrows

A vector is something that has a magnitude and a direction. In other words, it is an arrow.

Vector variables

In different text/videos, a vector variable might be written as any of these:

Often we use letters u, v, w or a, b, c for vectors.
If the vector has a specific meaning, we might use a letter related to that meaning (for example, \vec{n} for a "normal vector").

Vector variables

Two vectors are equal if their first components are equal and their second components are equal and so on.

- Example: $\langle 5,1,9\rangle=\left\langle 2+3, \frac{6}{6}, 13-4\right\rangle$

As with numbers, sometimes an equation describes one specific value

- $\vec{u}=\langle 1,-3\rangle$
- $x=-8$
- and sometimes there are many values that make an equation true:
- $|\vec{u}|=5$
- $x^{2}-4 x+3=0$

Origin

The zero vector is $\overrightarrow{0}=\langle 0,0\rangle$ in 2 D and $\overrightarrow{0}=\langle 0,0,0\rangle$ in 3D.
Depending on context, a vector like $\langle 5,1\rangle$ might refer to

- any arrow that points in a direction 5 right and 1 up, or
- the specific arrow from $(0,0)$ to $(5,1)$, or
- the point $(5,1)$.

Magnitude

The magnitude (or length or norm) of the vector $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ is

$$
|\vec{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

In 2D or 3D, this is exactly the physical length of the arrow, or the length of the line segment from the origin to the point \vec{v}.

Magnitude
The magnitude (or length or norm) of the vector $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ is

$$
|\vec{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} .
$$

In 2D or 3D, this is exactly the physical length of the arrow, or the length of the line segment from the origin to the point \vec{v}.

Scalar multiplication

For this class, a scalar is a number (that is, not a vector).
Given a scalar s and a vector $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$, we can multiply s and \vec{v} to get

$$
s \vec{v}=\left\langle s v_{1}, s v_{2}, \ldots, s v_{n}\right\rangle
$$

Examples:

$$
\text { - } 3\langle 8,1\rangle=\langle 24,3\rangle
$$

- $\frac{1}{2}\langle 8,1\rangle=\left\langle 4, \frac{1}{2}\right\rangle$
- $4\langle-3,9.1\rangle=\langle-12,36.8\rangle$
- $-2\langle 5,-4\rangle=\langle-10,8\rangle$

We say that $\langle 24,3\rangle$ is a scalar multiple of $\langle 8,1\rangle$.

- $0\langle 5,7\rangle=\langle 0,0\rangle$

Note that $\langle 24,10\rangle$ is not a scalar multiple of $\langle 8,1\rangle$.

Scalar multiplication

 Geometrically, $s \vec{v}$ is a "stretched" version of \vec{v}.

Parallel vectors

Two vectors \vec{u} and \vec{v} are parallel if $\vec{u}=s \vec{v}$ for some $s \neq 0$.

- Some people require $s>0$ and say, for example, that $\langle 3,2\rangle$ and $\langle-6,-4\rangle$ are "anti-parallel". Some people call them parallel.
- For any $\vec{v}, \overrightarrow{0}$ is a scalar multiple of \vec{v}, but $\overrightarrow{0}$ is not parallel to \vec{v}.

Parallel vectors

Two vectors \vec{u} and \vec{v} are parallel if $\vec{u}=s \vec{v}$ for some $s \neq 0$.

- Some people require $s>0$ and say, for example, that $\langle 3,2\rangle$ and $\langle-6,-4\rangle$ are "anti-parallel". Some people call them parallel.
- For any $\vec{v}, \overrightarrow{0}$ is a scalar multiple of \vec{v}, but $\overrightarrow{0}$ is not parallel to \vec{v}.

Vector addition

As lists, vectors are added by adding each coordinate.

- Example: $\langle 9,-4\rangle+\langle 5,6\rangle=\langle 14,2\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
15
\end{array}\right]
$$

As arrows, vectors are added "tip-to-tail".

Vector addition

As lists, vectors are added by adding each coordinate.

- Example: $\langle 9,-4\rangle+\langle 5,6\rangle=\langle 14,2\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
15
\end{array}\right]
$$

As arrows, vectors are added "tip-to-tail".

Vector addition

As lists, vectors are added by adding each coordinate.

- Example: $\langle 9,-4\rangle+\langle 5,6\rangle=\langle 14,2\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
15
\end{array}\right]
$$

As arrows, vectors are added "tip-to-tail".

Vector addition

As lists, vectors are added by adding each coordinate.

- Example: $\langle 9,-4\rangle+\langle 5,6\rangle=\langle 14,2\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
15
\end{array}\right]
$$

As arrows, vectors are added "tip-to-tail".

Vector addition

As lists, vectors are added by adding each coordinate.

- Example: $\langle 9,-4\rangle+\langle 5,6\rangle=\langle 14,2\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
15
\end{array}\right]
$$

As arrows, vectors are added "tip-to-tail".

Vector identities

$$
\begin{aligned}
& \vec{u}+\vec{v}=\vec{v}+\vec{u} \\
& (\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w}) \\
& s(t \vec{v})=(s t) \vec{v} \\
& s(\vec{u}+\vec{v})=(s \vec{u})+(s \vec{v}) \\
& (s+t) \vec{v}=(s \vec{v})+(t \vec{v}) \\
& \vec{u}+\overrightarrow{0}=\vec{u} \\
& \vec{u}+(-\vec{u})=\overrightarrow{0}
\end{aligned}
$$

Vector identities

$$
\begin{aligned}
& \vec{a}+\vec{b}=\vec{b}+\vec{a} \\
& (\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}) \\
& k(m \vec{a})=(k m) \vec{a}
\end{aligned}
$$

Basis vectors

Later, we will talk about the general idea of a "basis", but for now we will use just one 2D example and one 3D example.

- In 2D, the standard basis vectors are

$$
\vec{\imath}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \vec{\jmath}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

- In 3D, the standard basis vectors are

$$
\vec{\imath}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } \vec{\jmath}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { and } \vec{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

We can write any vector using scalar multiples, these basis vectors, and vector addition.

Basis vectors

We can write any vector using scalar multiples, these basis vectors, and vector addition.

Examples:

- $\left[\begin{array}{l}5 \\ 2\end{array}\right]=\left[\begin{array}{l}5 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 2\end{array}\right]=5\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1\end{array}\right]=5 \vec{\imath}+2 \vec{\jmath}$
- $\left[\begin{array}{c}6 \\ 0.91 \\ -2\end{array}\right]=6 \vec{\imath}+0.91 \vec{\jmath}-2 \vec{k} \quad \cdot\left[\begin{array}{l}a \\ b\end{array}\right]=a \vec{\imath}+b \vec{\jmath}$
- $\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]=4 \vec{\imath}+\vec{k}$
- $\left[\begin{array}{l}5 \\ 2 \\ 0\end{array}\right]=5 \vec{\imath}+2 \vec{\jmath}$

vector subtraction

using coordinates
geometrically

vector subtraction

We can subtract vectors using coordinates.

- Example: $\langle 9,-4\rangle-\langle 5,6\rangle=\langle 4,-10\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]-\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

geometrically

vector subtraction

We can subtract vectors using coordinates.

- Example: $\langle 9,-4\rangle-\langle 5,6\rangle=\langle 4,-10\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]-\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

What does $\vec{u}-\vec{v}$ mean geometrically?

- We could first find the scalar multiple $-\vec{v}=(-1) \vec{v}$ and then use tip-to-tail addition to find $\vec{u}+(-\vec{v})$.
- What does $a-b$ mean for numbers?

New meanings for old things

 What does 5×3 mean?

- More advanced: no pictures, just $5+5+5$.

What does $5 \times \frac{1}{3}$ mean? $\quad 5 \times 9.2 ? \quad 7.65 \times(-12)$?

- Multiplication can have different meanings or interpretations.
- This is also true for subtraction.

Subtraction

What does 5 - 3 mean on a number line?

Answer: The number $5-3$ describes how to move from 3 to 5 .

In general, $b-a$ describes how to move from a to b.

What does 5-3 mean on a number line?

Answer: The number $5-3$ describes how to move from 3 to 5 .

- To go from 5 to 3 instead, we move left, which is why $3-5$ is negative.

In general, $b-a$ describes how to move from a to b.

Vector subtraction

The vector $\vec{u}-\vec{v}$ points from the tip of \vec{v} to the tip of \vec{u}.

Note: The tails (start) of \vec{u} and \vec{v} must be at the same place to use this method.

- This agrees with finding $\vec{u}-\vec{v}$ by adding $\vec{u}+(-\vec{v})$ tip-to-tail.

In general, $b-a$ describes how to move from a to b.

vector subtraction

The vector $\vec{u}-\vec{v}$ points from the tip of \vec{v} to the tip of \vec{u}.

Note: The tails (start) of \vec{u} and \vec{v} must be at the same place to use this method.

- This agrees with finding $\vec{u}-\vec{v}$ by adding $\vec{u}+(-\vec{v})$ tip-to-tail.

Vector $\vec{u}-\vec{v}$ points from the tip

Note: The tails (start) of \vec{u} and \vec{v} must be at the same place to use this method.

Multiplication of vectors

Combining $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}\right\rangle$ into $\left\langle a_{1} b_{1}, a_{2} b_{2}\right\rangle$ is not actually useful. We will never do this.
Instead, we have "dot product" and "cross product" of vectors.

- $\vec{a} \cdot \vec{b}$ can be done for vectors of any dimension.
- $\vec{a} \times \vec{b}$ will only be done in 3D.
- We will never write $\vec{a} \vec{b}$ without either - or X.

Dot product

The dot product (or inner product or scalar product) of $\vec{a}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $\vec{b}=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ is

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} .
$$

This is a number, not a vector.

Examples:

- $\langle 5,7\rangle \cdot\langle 8,2\rangle=40+14=54$
- $\langle 3,-1,8\rangle \cdot\langle 0,4,2\rangle=0+-8+16=8$
- $\langle x, 6\rangle \cdot\langle 5,2\rangle=5 x+12$
- $\langle 2,-1\rangle \cdot\langle t-9, t\rangle=2(t-9)-t=t-18$

Dot product

The dot product has another formula:

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is the angle between \vec{a} and \vec{b}.

Using both of these formulas, we can find the angle between vectors.

Example: Find the acute angle between $\frac{\sqrt{3}, 1\rangle}{\vec{a}}$ and $\left.\frac{\langle 0,7}{\vec{b}}\right\rangle$.

$$
\begin{aligned}
& |\vec{a}|=\sqrt{(\sqrt{3})^{2}+(1)^{2}}=\sqrt{3+1}=\sqrt{4}=2 \\
& |\vec{b}|=\sqrt{(7)^{2}+(0)^{2}}=\sqrt{49}=7 \\
& \vec{a} \cdot \vec{b}=(\sqrt{3})(0)+(1)(7)=7
\end{aligned}
$$

Since $\vec{a} \cdot \vec{b}$ is also $(2)(7) \cos \theta$, we know

$$
(2)(7) \cos \theta=7 \rightarrow \cos \theta=1 / 2 \rightarrow \theta=60^{\circ}
$$

Example: Find the acute angle between $\langle 4,3\rangle$ and $\langle 1,6\rangle$.

$$
\begin{aligned}
& |\vec{a}|=\sqrt{16+9}=\sqrt{26}=6 \\
& |\vec{b}|=\sqrt{1+36}=\sqrt{37} \\
& \vec{a} \cdot \vec{b}=(4)(1)+(2)(6)=4+12=16
\end{aligned}
$$

So $5 \sqrt{37} \cos \theta=16$
$\cos \theta=\frac{16}{5 \sqrt{37}}$ cannot be solved by hand.
We say $\theta=\arccos \left(\frac{16}{5 \sqrt{37}}\right)$ or $\cos ^{-1}\left(\frac{16}{5 \sqrt{37}}\right)$.

