Warm-up: What have you learned about vectors from other classes?

18 November 2021

theadamabrams.com/live

Complex numbers Rectangular form 0 Polar form Polynomials Factoring 0 Irreducible polyn. 0 Roots (zeros) 0 Multiplicities 0 Quotient and remainder 0 Vectors Matrices

not linear algebra

Linear algebra

The word "vector" can mean many things. At times we will think of a **vector** as

- a point. 0
- an arrow with its tail at the origin.
- an arrow with its tail anywhere.

There is another option:

an element of an abstract vector space, but we won't use that idea of a vector in this class.

Lists Arrows

A vector is a list of numbers. We can write the same list of numbers in many formats. For example,

(5,3,8) (5,3,8) [538]

are all exactly the same vector. Each numbers is a component of the vector. Ø

 $\begin{bmatrix} 5 \\ 3 \\ 8 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 8 \end{bmatrix}$

• For [5,3,8], the "1st component" is 5, the "2nd component" is 3, etc. We often label the components with subscripts: $\vec{u} = \langle u_1, u_2, u_3 \rangle$. But sometimes we instead label a whole vector this way: $\overrightarrow{u_1}$ and $\overrightarrow{u_2}$.

A vector is a point (a dot) in 2D or 3D space.

VECTS as Points Arrows

Lists

Lists

Often we use letters u, v, w or a, b, c for vectors. If the vector has a specific meaning, we might use a letter related to that meaning (for example, \overrightarrow{n} for a "normal vector").

Veeler variables

In different text/videos, a vector variable might be written as any of these:

Two vectors are equal if their first components are equal and their second components are equal and so on. • Example: $\langle 5, 1, 9 \rangle = \langle 2+3, \frac{6}{6}, 13-4 \rangle$

As with numbers, sometimes an equation describes one specific value $\circ \overrightarrow{u} = \langle 1, -3 \rangle$ a x = -8

 \circ $\overrightarrow{u} = 5$

Veria Cor varia 2165

and sometimes there are many values that make an equation true:

 $x^2 - 4x + 3 = 0$

The zero vector is $\overrightarrow{0} = \langle 0,0 \rangle$ in 2D and $\overrightarrow{0} = \langle 0,0,0 \rangle$ in 3D. Depending on context, a vector like $\langle 5,1 \rangle$ might refer to any arrow that points in a direction 5 right and 1 up, or • the specific arrow from (0,0) to (5,1), or • the point (5,1).

$|\overrightarrow{v}| = \sqrt{v_1^2}$

In 2D or 3D, this is exactly the physical length of the arrow, or the length of the line segment from the origin to the point \overrightarrow{v} .

MACCONTRECTOR

The magnitude (or length or norm) of the vector $\vec{v} = \langle v_1, v_2, \dots, v_n \rangle$ is

$$v_1^2 + v_2^2 + \dots + v_n^2$$
.

$|\overrightarrow{v}| = \sqrt{v_1^2}$

of the line segment from the origin to the point \overrightarrow{v} .

MACCOLLECT

The magnitude (or length or norm) of the vector $\vec{v} = \langle v_1, v_2, \dots, v_n \rangle$ is

$$v_1^2 + v_2^2 + \dots + v_n^2$$
.

In 2D or 3D, this is exactly the physical length of the arrow, or the length

side Length 2

side length 4

For this class, a scalar is a number (that is, not a vector). Given a scalar s and a vector $\overrightarrow{v} = \langle v_1, v_2, \dots, v_n \rangle$, we can multiply s and \overrightarrow{v} to get

Examples:

- $3\langle 8,1\rangle = \langle 24,3\rangle$ • $\frac{1}{2}\langle 8,1\rangle = \langle 4,\frac{1}{2}\rangle$
- $4\langle -3, 9.1 \rangle = \langle -12, 36.8 \rangle$
- $-2\langle 5, -4 \rangle = \langle -10, 8 \rangle$
- $0\langle 5,7\rangle = \langle 0,0\rangle$

Scalar mailiplication

 $\overrightarrow{v} = \langle sv_1, sv_2, \dots, sv_n \rangle.$

We say that (24,3) is a scalar multiple of $\langle 8, 1 \rangle$.

Note that $\langle 24, 10 \rangle$ is *not* a scalar multiple of $\langle 8, 1 \rangle$.

Scalar multiplication Geometrically, $\overrightarrow{s v}$ is a "stretched" version of \overrightarrow{v} .

Two vectors \overrightarrow{u} and \overrightarrow{v} are parallel if $\overrightarrow{u} = s \overrightarrow{v}$ for some $s \neq 0$.

Some people require s > 0 and say, for example, that $\langle 3, 2 \rangle$ and For any \overrightarrow{v} , $\overrightarrow{0}$ is a scalar multiple of \overrightarrow{v} , but $\overrightarrow{0}$ is not parallel to \overrightarrow{v} .

Two vectors \overrightarrow{u} and \overrightarrow{v} are parallel if $\overrightarrow{u} = s \overrightarrow{v}$ for some $s \neq 0$.

As arrows, vectors are added "tip-to-tail".

Veelor accelect

 $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$ $(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$ $s(t\overrightarrow{v}) = (st)\overrightarrow{v}$ $s(\overrightarrow{u} + \overrightarrow{v}) = (s\overrightarrow{u}) + (s\overrightarrow{v})$ $(s+t)\overrightarrow{v} = (\overrightarrow{s}\overrightarrow{v}) + (\overrightarrow{t}\overrightarrow{v})$ $\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$ $\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}$

Veele Cor Eccentelles

$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$ $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ $k(m\overrightarrow{a}) = (km)\overrightarrow{a}$

100 - 100

Veee eer ees

Later, we will talk about the general idea of a "basis", but for now we will use just one 2D example and one 3D example. In 2D, the standard basis vectors are $\vec{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. In 3D, the standard basis vectors are 0 $\vec{i} = \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}$ and $\vec{j} = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix}$ and $\vec{k} = \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$. We can write any vector using scalar multiples, these basis vectors, and

vector addition.

vector addition.

Examples: $\begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 5\vec{i} + 2\vec{j}$ $\begin{bmatrix} 6\\0.91\\-2 \end{bmatrix} = 6\vec{\imath} + 0.91\vec{\jmath} - 2\vec{k} \qquad \textcircled{a} \begin{bmatrix} a\\b \end{bmatrix} = a\vec{\imath} + b\vec{\jmath}$ $= 4\vec{i} + \vec{k}$ 0

We can write any vector using scalar multiples, these basis vectors, and

$\begin{vmatrix} 5 \\ 2 \end{vmatrix} = 5\vec{\imath} + 2\vec{j}$

using coordinates

geometrically

Veelor subtraction

We can subtract vectors using coordinates. • Example: $\langle 9, -4 \rangle - \langle 5, 6 \rangle = \langle 4, -10 \rangle$ • Example: $\begin{bmatrix} 5 \\ 8 \end{bmatrix} - \begin{bmatrix} -2 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$

geometrically

Veelor sucheraction

We can subtract vectors using coordinates. • Example: $\langle 9, -4 \rangle - \langle 5, 6 \rangle = \langle 4, -10 \rangle$ • Example: $\begin{bmatrix} 5 \\ 8 \end{bmatrix} - \begin{bmatrix} -2 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$

What does $\overrightarrow{u} - \overrightarrow{v}$ mean geometrically? • We could first find the scalar multiple $-\vec{v} = (-1)\vec{v}$ and then use tipto-tail addition to find $\overrightarrow{u} + (-\overrightarrow{v})$.

- What does a b mean for numbers?

Veelor subtraction

• More advanced: no pictures, just 5 + 5 + 5.

What does $5 \times \frac{1}{3}$ mean?

Multiplication can have different meanings or interpretations. 0 This is also true for subtraction.

5×9.2 ? $7.65 \times (-12)$?

What does 5 - 3 mean on a number line?

Answer: The number 5 - 3 describes how to move from 3 to 5.

In general, b - a describes how to move from *a* to *b*.

What does 5 - 3 mean on a number line?

Answer: The number 5 - 3 describes how to move from 3 to 5. • To go from 5 to 3 instead, we move *left*, which is why 3 - 5 is negative.

In general, b - a describes how to move from *a* to *b*.

The vector $\overrightarrow{u} - \overrightarrow{v}$ points from the tip of \overrightarrow{v} to the tip of \overrightarrow{u} .

Veelor subtraction

Note: The tails (start) $\overline{u}-\overline{v}$ of \overline{u} and \overline{v} must be at the same place to use this method.

• This agrees with finding $\overrightarrow{u} - \overrightarrow{v}$ by adding $\overrightarrow{u} + (-\overrightarrow{v})$ tip-to-tail.

In general, b - a describes how to move from *a* to *b*.

The vector $\overrightarrow{u} - \overrightarrow{v}$ points from the tip of \overrightarrow{v} to the tip of \overrightarrow{u} .

Veelor subtraction

Note: The tails (start) $\overline{u}-\overline{v}$ of \overline{u} and \overline{v} must be at the same place to use this method.

This agrees with finding $\vec{u} - \vec{v}$ by adding $\vec{u} + (-\vec{v})$ tip-to-tail.

from the tip of v to the tip of u.

Combining $\overrightarrow{a} = \langle a_1, a_2 \rangle$ and $\overrightarrow{b} = \langle b_1, b_2 \rangle$ into $\langle a_1b_1, a_2b_2 \rangle$ is not actually useful. We will never do this. Instead, we have "dot product" and "cross product" of vectors. $a \rightarrow b$ can be done for vectors of any dimension. $\overrightarrow{a} \times \overrightarrow{b}$ will only be done in 3D. [•] We will never write \overrightarrow{a} \overrightarrow{b} without either \cdot or \times .

The dot product (or inner product or scalar product) of $\overrightarrow{a} = \langle a_1, a_2, \dots, a_n \rangle$ and $\overrightarrow{b} = \langle b_1, \dots, b_n \rangle$ is $\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$ This is a number, not a vector. Examples:

- $\langle 5,7 \rangle \cdot \langle 8,2 \rangle = 40 + 14 = 54$ $\langle 3, -1, 8 \rangle \cdot \langle 0, 4, 2 \rangle = 0 + -8 + 16 = 8$ • $\langle x, 6 \rangle \cdot \langle 5, 2 \rangle = 5x + 12$
- $\langle 2, -1 \rangle \cdot \langle t 9, t \rangle = 2(t 9) t = t 18$

The dot product has another formula:

where θ is the angle between \overrightarrow{a} and \overrightarrow{b} .

$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$

Using both of these formulas, we can find the angle between vectors.

Example: Find the acute angle between $\langle \sqrt{3}, 1 \rangle$ and $\langle 0, 7 \rangle$.

 $|\vec{a}| = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3+1} = \sqrt{4} = 2$ $\vec{b} = \sqrt{(7)^2 + (0)^2} = \sqrt{49} = 7$ $\vec{a} \cdot \vec{b} = (\sqrt{3})(0) + (1)(7) = 7$ Since $\vec{a} \cdot \vec{b}$ is also $(2)(7)\cos\theta$, we know $(2)(7)\cos\theta = 7 \rightarrow \cos\theta = 1/2 \rightarrow \theta = 60^{\circ}$

Example: Find the acute angle between $\langle 4,3 \rangle$ and $\langle 1,6 \rangle$.

 $|\overrightarrow{a}| = \sqrt{16+9} = \sqrt{25} = 5$ $\vec{b} = \sqrt{1+36} = \sqrt{37}$ $\vec{a} \cdot \vec{b} = (4)(1) + (2)(6) = 4 + 12 = 16$ So $5\sqrt{37\cos\theta} = 16$

