Math 1688

25 November 2021

Warm-up:
Vector subtraction, perpendicular vectors, parallel vectors.
theadamabrams.com/live

Last week

The word "vector" can mean many things. At times we will think of a vector as

- a list.
- a point.
- an arrow with its tail at the origin.
- an arrow with its tail anywhere.

There is another option,

- an element of an abstract vector space,
but we won't use that idea of a vector in this class.

Last week

Vector variables can be written with an arrow above the letter.

U
If we write a vector as a list of numbers, there are many possible formats:

Special vectors in 2D:

- $\overrightarrow{0}=[0,0]$ is "the zero vector"
- $\vec{\imath}=[1,0]$
- $\vec{\jmath}=[0,1]$

Special vectors in 3D:

- $\overrightarrow{0}=[0,0,0]$ is "the zero vector"
- $\vec{\imath}=[1,0,0]$
- $\vec{\jmath}=[0,1,0]$
- $\vec{k}=[0,0,1]$

Last week: + and -

- In terms of arrows, we have "tip-to-tail addition". Example:

- If \vec{a}, \vec{b} start at the same point, then $\vec{a}-\vec{b}$ points from the end of \vec{b} to the end of \vec{a}. Example:

$\vec{a}-\vec{b}$ goes from "point \vec{b} " to "point \vec{a} ".

Last week: multiplication We will never combine $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$ into $\left[\begin{array}{l}(1)(4) \\ (2)(5) \\ (3)(6)\end{array}\right]=\left[\begin{array}{c}4 \\ 10 \\ 18\end{array}\right]$ in this class.

 Instead we have- scalar multiplication $7\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{c}(7)(1) \\ (7)(2) \\ (7)(3)\end{array}\right]=\left[\begin{array}{c}7 \\ 14 \\ 21\end{array}\right]$
- dot product $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \cdot\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]=(1)(4)+(2)(5)+(3)(6)=32$
- cross product $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \times\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]=\left[\begin{array}{c}3 \\ 6 \\ -3\end{array}\right]$ to be explained later

Last week: multiplication

A scalar multiple of an arrow is a stretched (scaled) version-the magnitude can change, but the direction does not.

Last week: magnitude

The magnitude (or length or norm) of the vector \vec{v} is written $|\vec{v}|$.

$$
\text { For } \vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \text {, we have }|\vec{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \text {. }
$$

- This is exactly the physical length of the arrow in 2D or 3D.

A vector with magnitude 1 is called a unit vector.

- Some people use a hat when writing unit vectors: $\widehat{u}=\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right]$.

Properties

- $|\vec{a}| \geq 0$.
- $|\vec{a}|=0$ if and only if $\vec{a}=\overrightarrow{0}$.
- $|s \vec{a}|=|s||\vec{a}|$.
- $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$. This is called the "Triangle Inequality".

Dot product

The dot product of two vectors $\vec{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$, which
we write as $\vec{a} \cdot \vec{b}$ (said aloud as "A dot B "), is a number that can be computed as either

- $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}$
or
- $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos ($ angle between \vec{a} and $\vec{b})$.

The dot product of two vectors $\vec{a}=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$, which we write as $\vec{a} \cdot \vec{b}$ (said aloud as "A dot B "), is a number that can be computed as either

- $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
or
- $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos ($ angle between \vec{a} and $\vec{b})$.

Example: Find the acute angle between $\langle 4,3\rangle$ and $\langle 1,6\rangle$.

$$
\begin{aligned}
& |\vec{a}|=\sqrt{16+9}=\sqrt{26}=5 \\
& |\vec{b}|=\sqrt{1+36}=\sqrt{37} \\
& \vec{a} \cdot \vec{b}=(4)(1)+(3)(6)=4+18=22
\end{aligned}
$$

So $5 \sqrt{37} \cos \theta=22$
$\cos \theta=\frac{22}{5 \sqrt{37}}$ cannot be solved by hand.
We say $\theta=\arccos \left(\frac{22}{5 \sqrt{37}}\right)$ or $\cos ^{-1}\left(\frac{22}{5 \sqrt{37}}\right)$.

Orthogonal / perpendicular

Two vectors are called orthogonal if their dot product is zero.

- For non-zero vectors, this means they are perpendicular (or normal).

Why? Using the second dot prod. formula, $\vec{u} \cdot \vec{v}=0$ means

$$
|\vec{u}||\vec{v}| \cos \theta=0
$$

Since $\vec{u} \neq 0$ and $\vec{v} \neq 0,|\vec{u}|$ and $|\vec{v}|$ cannot be 0 . So $\cos \theta$ must be 0 , and for an acute angle this means θ must be 90°.

- The zero vector is orthogonal to every vector:

$$
\begin{aligned}
\overrightarrow{0} \cdot\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle & =0 v_{1}+0 v_{2}+\cdots+0 v_{n} \\
& =0+0+\cdots+0 \\
& =0
\end{aligned}
$$

Which of $\vec{a}=[4,2]$ or $\vec{b}=[4,3]$ is orthogonal to $[2,-4]$?

$$
\vec{a}
$$

Give an example of a non-zero vector that is orthogonal to $\vec{c}=[3,7]$.
Any non-zero scalar multiple of $[7,-3]$. These include $[7,-3]$ and $[14,-6]$

$$
\text { and }[-7,3] \text { and }[-3.6,-1.6] \text {. }
$$

Set / collection

In mathematics it is often useful to talk about a set (or collection) of objects.

- Usually a set is written using curly brackets \{ \}, and when we use a variable for sets we use capital letters.
- Example: $S=\{1,2,3,25,1000\}$.
- Order doesn't matter.
- $\{38,4,-5\}$ is exactly the same set as $\{-5,38,4\}$.

Some collections have their own special symbols:

- The collection of all natural numbers is written as \mathbb{N} or \mathbf{N}.
- The collection of all real numbers is written as \mathbb{R} or \mathbf{R}.
- The 2D plane is \mathbb{R}^{2}.
- 3D space is \mathbb{R}^{3}.

Set / collection

- The symbol \in means "is an element of" (or "is in").
- For example since \mathbb{R} is the collection of all real numbers,

$$
x \in \mathbb{R}
$$

means " x is in the collection of real numbers", which is the same as " x is a real number".

- More examples:
- " $k \in \mathbb{N}$ " mean " k is a natural number".
- " $t \in \mathbb{R}^{\prime}$ means " t is a real number".
- " $\vec{u} \in \mathbb{R}^{3 "}$ means " \vec{u} is in 3D space".

How ko wrike collections

Instead of listing items, we often describe collections by some rules.

The following are different ways to write exactly the same statement:

- $S=\{1,3,5,7,9, \ldots\}$
- $S=\{x: x$ is an odd natural number $\}$
- $S=\{n \in \mathbb{N}: n$ is odd $\}$

Remember \in means "is in".

- $S=\{2 k+1: k \in \mathbb{N}\}$

How to write collections

The objects in a collection do not have to be numbers.
Examples:

- $A=\{\langle 4,3\rangle,\langle 2,-5\rangle,\langle 1,31\rangle,\langle-5,9\rangle\}$ is a set of four vectors.
- $B=\{5,9,3,8,7\}$ is a collection of 5 numbers.
- $C=\{5 t: t \in \mathbb{N}\}$ is a set of infinitely many numbers $(5,10,15, \ldots)$.
- $D=\{5 t: t \in \mathbb{R}\}$ is exactly the collection \mathbb{R}.
- $E=\{\langle 4 t, 10 t\rangle: t \in \mathbb{R}\}$ is a collection of vectors that includes $\langle 4,10\rangle$ and $\langle 2,5\rangle$ and $\langle-4,-10\rangle$ (but not $\langle 4,0\rangle$).

How to write collections

The objects in a collection do not have to be numbers.
Examples:

- $A=\left\{\left[\begin{array}{l}4 \\ 3\end{array}\right],\left[\begin{array}{c}2 \\ -5\end{array}\right],\left[\begin{array}{c}1 \\ 31\end{array}\right],\left[\begin{array}{c}-5 \\ 9\end{array}\right]\right\}$ is a set of four vectors.
- $B=\{5,9,3,8,7\}$ is a collection of 5 numbers.
- $C=\{5 t: t \in \mathbb{N}\}$ is a set of infinitely many numbers $(5,10,15, \ldots)$.
- $D=\{5 t: t \in \mathbb{R}\}$ is exactly the collection \mathbb{R}.
- $E=\left\{\left[\begin{array}{c}4 t \\ 10 t\end{array}\right]: t \in \mathbb{R}\right\}$ is a collection of vectors that

$$
\text { includes }\left[\begin{array}{c}
4 \\
10
\end{array}\right] \text { and }\left[\begin{array}{l}
2 \\
5
\end{array}\right] \text { and }\left[\begin{array}{c}
-4 \\
-10
\end{array}\right] \text { (but not }\left[\begin{array}{l}
4 \\
0
\end{array}\right] \text {). }
$$

Next week: lines and planes

You will need to be able to work both visually and with equations/symbols about

- lines in 2D

- lines in 3D

- planes in 3D

