25 November 2021

Warm-up: Vector subtraction, perpendicular vectors, parallel vectors.

theadamabrams.com/live

The word "vector" can mean many things. At times we will think of a vector as

- a point.
- an arrow with its tail at the origin.
- an arrow with its tail anywhere.

There is another option,

an element of an abstract vector space, but we won't use that idea of a vector in this class.

Vector variables can be written with an arrow above the letter.

Special vectors in 2D: $\stackrel{\rightarrow}{0} = [0, 0]$ is "the zero vector" $\circ \vec{\iota} = [1,0]$ $\vec{j} = [0, 1]$ Special vectors in 3D: $\stackrel{\rightarrow}{0} = [0, 0, 0]$ is "the zero vector" $\circ \vec{i} = [1, 0, 0]$ $\vec{j} = [0, 1, 0]$ $\vec{k} = [0, 0, 1]$

In terms of arrows, we have "tip-to-tail addition". Example: 0

If \overrightarrow{a} , \overrightarrow{b} start at the same point, then $\overrightarrow{a} - \overrightarrow{b}$ points from the end of \overrightarrow{b} to the end of \overrightarrow{a} . Example:

If \overrightarrow{a} and \overrightarrow{b} start at the origin, then $\overrightarrow{a} - \overrightarrow{b}$ goes from "point \overrightarrow{b} " to "point \overrightarrow{a} ".

Last week: mailiplication We will *never* combine $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ into $\begin{bmatrix} (1)(4) \\ (2)(5) \\ (3)(6) \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 18 \end{bmatrix}$ in this class.

Instead we have

• scalar multiplication 7 $\begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = \begin{vmatrix} (7)(1) \\ (7)(2) \\ (7)(3) \end{vmatrix} = \begin{vmatrix} 7 \\ 14 \\ 21 \end{vmatrix}$ • dot product $\begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} \cdot \begin{vmatrix} 4 \\ 5 \\ 6 \end{vmatrix} = (1)(4) + (2)(5) + (3)(6) = 32$ • cross product $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \times \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ -3 \end{bmatrix}$ to be explained later

A scalar multiple of an arrow is a stretched (scaled) version—the magnitude can change, but the direction does not.

Last week: multiplication

The magnitude (or length or norm) of the vector \vec{v} is written $|\vec{v}|$.

A vector with magnitude 1 is called a unit vector.

Some people use a hat when writing unit vectors: $\hat{u} = \begin{bmatrix} 3/5 \\ 1/2 \end{bmatrix}$

For
$$\overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
, we have $|\overrightarrow{v}| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$.

4/5

$\begin{vmatrix} \overrightarrow{a} \\ \overrightarrow{a} \end{vmatrix} \ge 0. \qquad \qquad \begin{vmatrix} \overrightarrow{a} \\ \overrightarrow{a} \end{vmatrix} = 0 \text{ if and only if } \overrightarrow{a} = \overrightarrow{0}.$ $\begin{vmatrix} \overrightarrow{s} \\ \overrightarrow{a} \end{vmatrix} = |s| |\overrightarrow{a}|.$ $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix} \le |\overrightarrow{a}| + |\overrightarrow{b}|. \text{ This is called the "Triangle Inequality".}$

The **dot product** of two vectors $\vec{a} = \begin{vmatrix} a_1 \\ a_2 \end{vmatrix}$ and $\vec{b} = \begin{vmatrix} b_1 \\ b_2 \end{vmatrix}$, which

we write as $\vec{a} \cdot \vec{b}$ (said aloud as "A dot B"), is a number that can be computed as either

• $\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2$

or

• $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\text{angle between } \vec{a} \text{ and } \vec{b}).$

we write as $\vec{a} \cdot \vec{b}$ (said aloud as "A dot B"), is a number that can be computed as either

 $\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2 + a_3b_3$

or

• $\vec{a} \cdot \vec{b} = \left| \vec{a} \right| \left| \vec{b} \right| \cos(\text{angle between } \vec{a} \text{ and } \vec{b}).$

The **dot product** of two vectors $\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$, which

Example: Find the acute angle between $\langle 4,3 \rangle$ and $\langle 1,6 \rangle$.

 $|\overrightarrow{a}| = \sqrt{16+9} = \sqrt{25} = 5$ $\vec{b} = \sqrt{1+36} = \sqrt{37}$ $\vec{a} \cdot \vec{b} = (4)(1) + (3)(6) = 4 + 18 = 22$ $50 6\sqrt{37}\cos\theta = 22$

Two vectors are called orthogonal if their dot product is zero. For non-zero vectors, this means they are perpendicular (or normal). Since $\vec{u} \neq 0$ and $\vec{v} \neq 0$, $|\vec{u}|$ and $|\vec{v}|$ cannot be 0. So $\cos\theta$

The zero vector is orthogonal to every vector:

Orthogonal / perpendicular Why? Using the second dot prod. formula, $\vec{u} \cdot \vec{v} = 0$ means $|\overrightarrow{u}||\overrightarrow{v}|\cos\theta=0.$

must be 0, and for an acute angle this means θ must be 90°.

 $0 \cdot \langle v_1, v_2, ..., v_n \rangle = 0v_1 + 0v_2 + ... + 0v_n$ = 0 + 0 + ... + 0 = 0

Which of $\overrightarrow{a} = [4, 2]$ or $\overrightarrow{b} = [4, 3]$ is orthogonal to [2, -4]?

 \overrightarrow{a}

Any non-zero scalar multiple of [7, -3]. These include [7, -3] and [14, -6] and [-7, 3] and [-3.5, -1.5].

Give an example of a non-zero vector that is orthogonal to $\vec{c} = [3, 7]$.

- for sets we use capital letters.
 - Example: $S = \{1, 2, 3, 25, 1000\}.$
- Order doesn't matter.
 - $\{38, 4, -5\}$ is exactly the same set as $\{-5, 38, 4\}$.

Some collections have their own special symbols: The collection of all natural numbers is written as \mathbb{N} or \mathbb{N} . 0 • The collection of all real numbers is written as \mathbb{R} or \mathbb{R} . • 3D space is \mathbb{R}^3 .

- The 2D plane is \mathbb{R}^2 .

In mathematics it is often useful to talk about a set (or collection) of objects. Usually a set is written using curly brackets { }, and when we use a variable

- The symbol \in means "is an element of" (or "is in"). 0
- For example since \mathbb{R} is the collection of all real numbers,

number".

- More examples:
 - " $k \in \mathbb{N}$ " mean "k is a natural number".
 - " $t \in \mathbb{R}$ " means "t is a real number".
 - " $\vec{u} \in \mathbb{R}^3$ " means " \vec{u} is in 3D space".

 $x \in \mathbb{R}$ means "x is in the collection of real numbers", which is the same as "x is a real

Instead of listing items, we often describe collections by some rules.

brackets

colon

kind of object (number, vector, etc.)

The following are different ways to write exactly the same statement: • $S = \{1, 3, 5, 7, 9, ...\}$

- $S = \{x : x \text{ is an odd natural number}\}$
- $S = \{n \in \mathbb{N} : n \text{ is odd}\}$
- $S = \{2k+1 : k \in \mathbb{N}\}$

brackets

rules / requirements / descriptions

Remember \in means "is in".

The objects in a collection do not have to be numbers. Examples:

- $A = \{\langle 4,3 \rangle, \langle 2,-5 \rangle, \langle 1,31 \rangle, \langle -5,9 \rangle\}$ is a set of four vectors.
- $B = \{5, 9, 3, 8, 7\}$ is a collection of 5 numbers.
- $D = \{5t : t \in \mathbb{R}\}$ is exactly the collection \mathbb{R} .
- $E = \{\langle 4t, 10t \rangle : t \in \mathbb{R}\}$ is a collection of vectors that

• $C = \{5t : t \in \mathbb{N}\}$ is a set of infinitely many numbers (5, 10, 15, ...).

includes $\langle 4,10\rangle$ and $\langle 2,5\rangle$ and $\langle -4,-10\rangle$ (but not $\langle 4,0\rangle$).

The objects in a collection do not have to be numbers. Examples:

• $A = \left\{ \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \end{bmatrix}, \begin{bmatrix} 1 \\ 31 \end{bmatrix}, \begin{bmatrix} -5 \\ 9 \end{bmatrix} \right\}$ is a set of four vectors. • $B = \{5, 9, 3, 8, 7\}$ is a collection of 5 numbers. • $D = \{5t : t \in \mathbb{R}\}$ is exactly the collection \mathbb{R} . • $E = \left\{ \begin{bmatrix} 4t \\ 10t \end{bmatrix} : t \in \mathbb{R} \right\}$ is a collection of vectors that includes $\begin{bmatrix} 4 \\ 10 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ -10 \end{bmatrix}$ (but not $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$).

• $C = \{5t : t \in \mathbb{N}\}$ is a set of infinitely many numbers (5, 10, 15, ...).

You will need to be able to work *both* visually *and* with equations/symbols about

Iines in 2D

Iines in 3D

planes in 3D

0