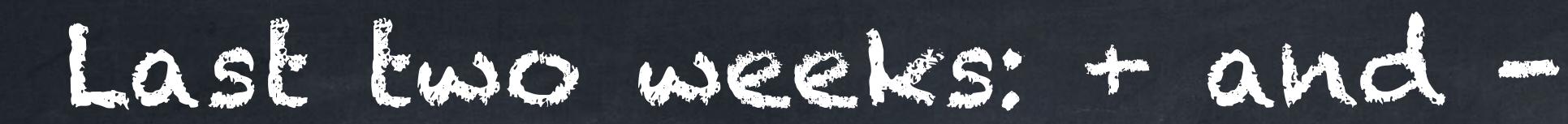
2 December 2021

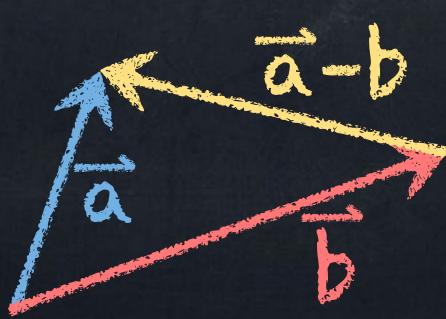
Warm-up: Vector subtraction, plane perpendicular to line, scalar multiples.

theadamabrams.com/live

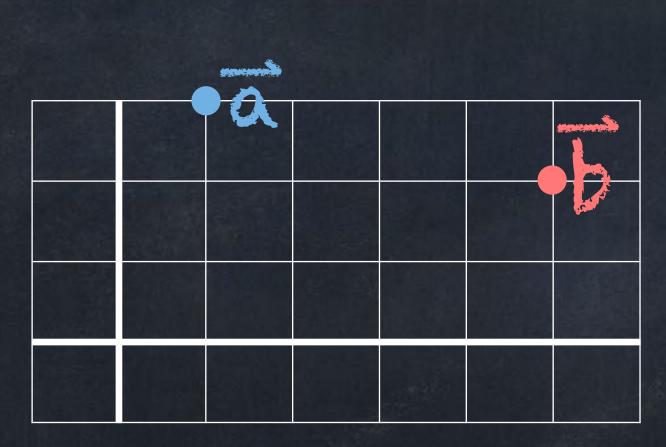


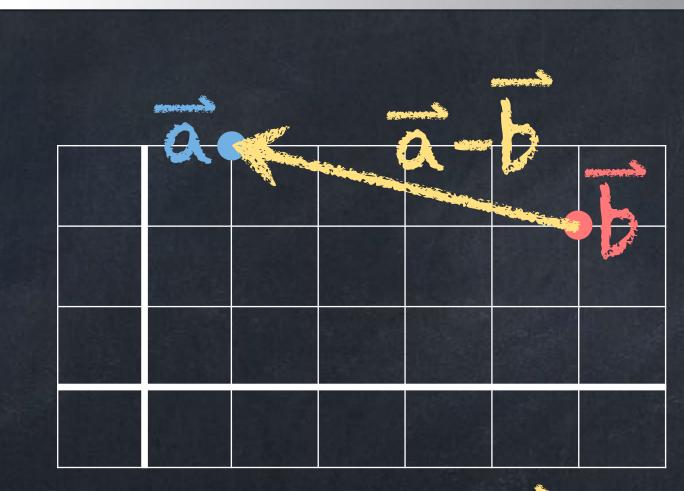
In terms of arrows, we have "tip-to-tail addition". Example: 0

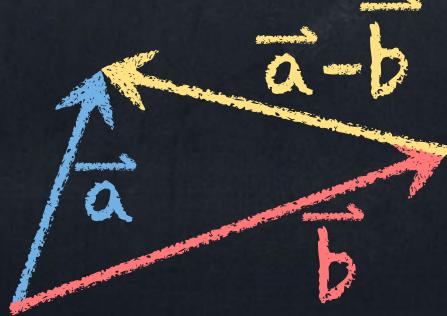
If \overrightarrow{a} , \overrightarrow{b} start at the same point, then $\overrightarrow{a} - \overrightarrow{b}$ points from the end of \overrightarrow{b} to the end of \overrightarrow{a} .



If we think of \overrightarrow{a} and \overrightarrow{b} as points, then $\overrightarrow{a} - \overrightarrow{b}$ goes from \overrightarrow{b} to \overrightarrow{a} .







Last two weeks: mailing We never combine $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and $\begin{bmatrix} 4\\5\\6 \end{bmatrix}$ into $\begin{bmatrix} (1)(4)\\(2)(5)\\(3)(6) \end{bmatrix} = \begin{bmatrix} 4\\10\\18 \end{bmatrix}$ in this class. So far we have talked about • scalar multiplication 7 $\begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = \begin{vmatrix} (7)(1) \\ (7)(2) \\ (7)(3) \end{vmatrix} = \begin{vmatrix} 7 \\ 14 \\ 21 \end{vmatrix}$ and

• dot product $\begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 4\\5\\6 \end{bmatrix} = (1)(4) + (2)(5) + (3)(6) = 32$ • Also, $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos(\text{angle}).$

Examples:

• $A = \left\{ \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \end{bmatrix}, \begin{bmatrix} 1 \\ 31 \end{bmatrix}, \begin{bmatrix} -5 \\ 9 \end{bmatrix} \right\}$ is a collection of four vectors. • $B = \{5, 9, 3, 8, 7\}$ is a collection of 5 numbers. • $C = \{5t : t \in \mathbb{N}\}$ is a set of infinitely many numbers (5, 10, 15, ...). • $D = \left\{ \begin{bmatrix} 4t \\ 10t \end{bmatrix} : t \in \mathbb{R} \right\}$ is a collection of infinitely many vectors that includes $\begin{bmatrix} 4 \\ 10 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ -10 \end{bmatrix}$ (but not $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$).

Last week: collections/sets

You will need to be able to work *both* visually *and* with equations/symbols about

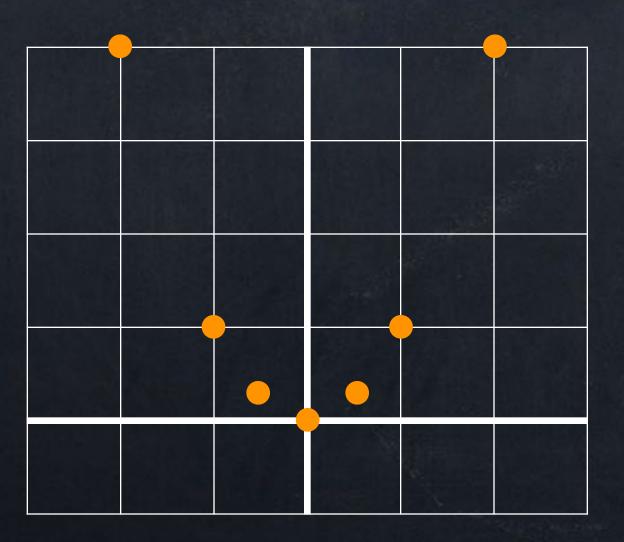
Iines in 2D

lines in 3D

planes in 3D

There are two ways to think about, for example, $y = x^2$.

- point on the curve.
- numbers.



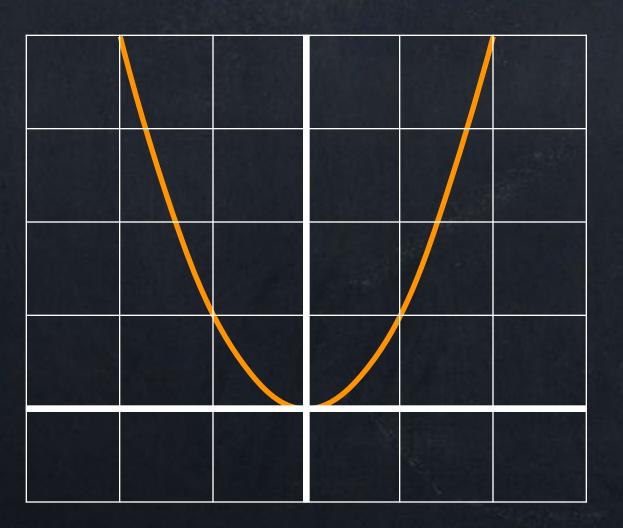
Equalions of shapes

For each specific x-value, you get a y-value, and this tells you one

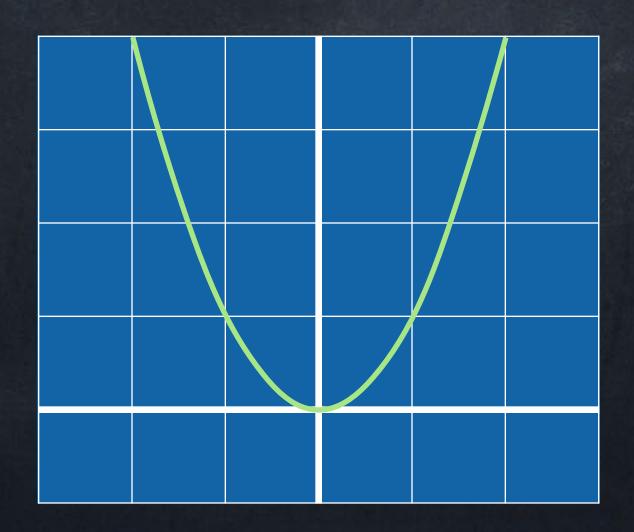
• For any point (x, y) anywhere, we test whether $y = x^2$ is true for those

•	-	0	۲		۲	-	1	-	-	-			-	-	0	۲	۲	-	۲	1	-	-
•	6	6	6	6	6	6	6	6	6	6			0	0	6	6	6	Ø	6	6	6	•
•	6	6	6	6	6	6	6	6	Ø	6) 🎯	6	6	6	6	6	Ø	6	6	6	•
	6	6	6	6	6	6	6	6	6	6	e		6	6	6	6	6	6	6	6	6	6
•	6	6	6	6	Ø	6	6	6	6	6		6	0	6	6	6	6	6	6	6	6	•
•	0	0	6	0	6	6	6	0	0	0		6	0	6	1	6	6	6	6	6	6	•
•	6	6	6	6	6	6	6	6	6	0		6	6	0	6	6	6	6	6	6	6	•
•	0	6	6	Ø	Ø	Ø	6	6	Ø	6		6	6	6	6	Ø	6	Ø	Ø	6	6	•
•	Ø	6	6	0	0	6	6	Ø	Ø	0) 🎯	Ø	6	6	0	0	Ø	6	0	0	•
•	6	6	6	0	6	6	Ø	0	6	6		0	6	@	0	6	6	6	6	6	6	•
•	6	6	6	6	6	6	6	6	Ø	0	(0	6	6	6	6	0	6	6	6	•
•	6	6	6	Ø	Ø	Ø	6	Ø	Ø	6	(6	0	6	6	6	Ø	Ø	Ø	6	6	•
•	6	6	6	6	6	Ø	6	6	Ø	6) 🎯	Ø	0	6	6	0	6	6	6	6	•
6	ŵ	ø	ŵ	Ŷ	ŵ	ŵ	e	ŵ	ŵ	Ŷ	4	ŵ	ŵ	ŵ	Ŷ	ø	ŵ	Ŷ	ê	ŵ	ŵ	
•	6	6	6	6	Ø	Ø	6	Ø	Ø	0		• 🎯	Ø	6	6	6	Ø	Ø	Ø	6	Ø	0
•	Ø	6	6	6	0	Ø	6	6	Ø	0	() 🎯	0	6	6	6	0	Ø	Ø	6	6	0
()	6		6		6	6	60	6	6		6		6				6	6	6			6

- For each specific x-value, you get a y-value, and this tells you one point on the curve.
- numbers.



• For any point (x, y) anywhere, we test whether $y = x^2$ is true for those



the line.

- 0
- If we only know
 - a direction vector for a line L0

A direction vector for a line is a vector that is parallel (or anti-parallel) to

The length of this vector does not matter: if \vec{v} is a direction vector for a line, then $2\vec{v}$ and $-0.3\vec{v}$ and are also directions vectors for that line.

this is not enough to know what the line L is—there will be many lines that all have that same direction vector (these lines will be parallel).

the line.

- 0
- If we only know
 - a point on a line L 0 that go through that point.

A direction vector for a line is a vector that is parallel (or anti-parallel) to

The length of this vector does not matter: if \vec{v} is a direction vector for a line, then $2\vec{v}$ and $-0.3\vec{v}$ and are also directions vectors for that line.

this is not enough to know what the line L is—there will be many lines



the line.

- If we know
 - a point on a line L 0
 - and
 - a direction vector for a line L0 then there is exactly one line L that fits both of these.

A direction vector for a line is a vector that is parallel (or anti-parallel) to

• The length of this vector does not matter: if \vec{v} is a direction vector for a line, then $2\overrightarrow{v}$ and $-0.3\overrightarrow{v}$ and are also directions vectors for that line.

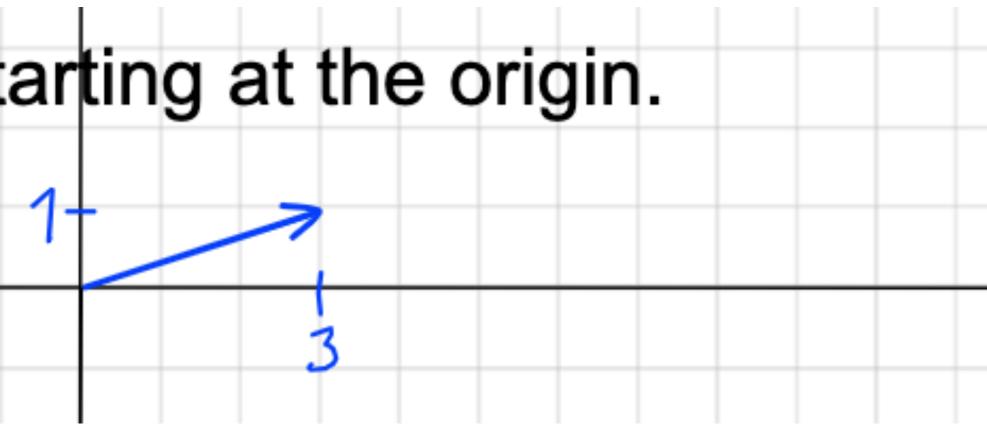
http://whiteboard.fi/math1688 If you are asked for a room code, it is math1688 0 Type your first and last name, then click Join Whiteboard Class Click TOGGLE TEACHER WHITEBOARD

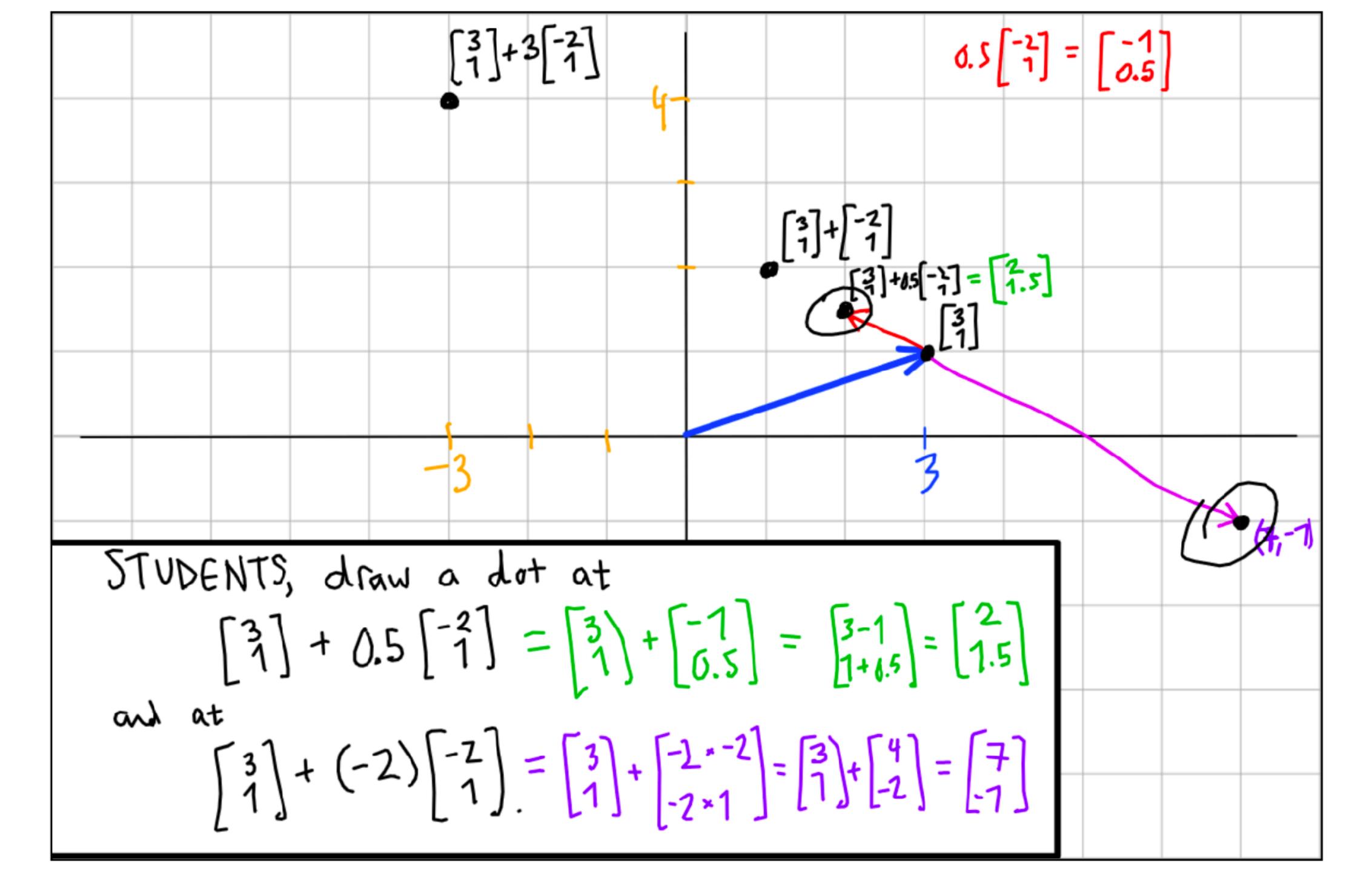
pen

change color

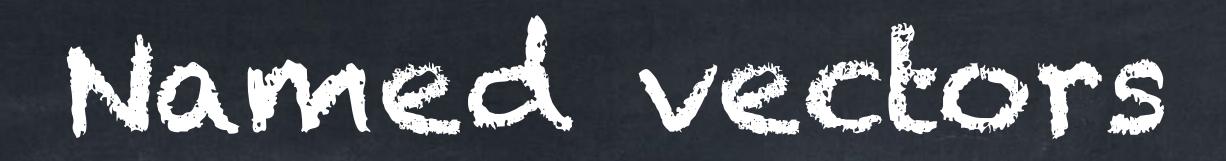
Draw the arrow [3,1] starting at the origin.

Draw the arrow [-2,1] starting at (3,1).





Ð ж ÷ Q ٩. 🕒 PUSH / ASSIGN ASSIGNMENTS $6\binom{-2}{1}$]+2[]] []+[-7] h-5[-z] [1]+0,2[-] 1 [7] []+(-1)[-=] 3 []+(-2)[-7] [x] : (x)=[]+t[-1] for some ter? equation for this line!



We have talked about some special vectors in 2D and 3D: $\vec{i} = [1, 0, 0]$ $\circ \vec{\iota} = [1,0]$ $\vec{j} = [0, 1]$ $\vec{j} = [0, 1, 0]$ $\overset{\circ}{k} = [0, 0, 1].$

There is one other vector letter that has a special meaning: and $\vec{r} = \begin{vmatrix} x \\ y \\ z \end{vmatrix}$ in 3D.

$$\vec{r} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 in 2D,

This allows us to write very short equations.

In 2D the line through $\overrightarrow{p} = [x_0, y_0]$ parallel to $\overrightarrow{d} = [a, b]$ has equation $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{vmatrix} x_0 \\ y_0 \end{vmatrix} + t \begin{bmatrix} a \\ b \end{bmatrix}$ • or $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 + ta \\ y_0 + tb \end{bmatrix}$ equation • or $x = x_0 + ta, y = y_0 + tb$ • or $\vec{r} = \vec{p} + t \vec{d}$.

The line through the point \overrightarrow{p} with direction vector \vec{d} has $\vec{r} = \vec{p} + t \vec{d}$ in 2D or 3D!

 $\vec{r} = \begin{vmatrix} 5 \\ -2 \end{vmatrix} + k \begin{vmatrix} 4 \\ 7 \end{vmatrix}$ or $\begin{vmatrix} 5 \\ -2 \end{vmatrix} + k \begin{vmatrix} 4 \\ 7 \end{vmatrix}$

or $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5+4! \\ -2+7! \end{bmatrix}$ or x = 5+4! and y = -2+7!

Since k = (x-5)/4 and k = (y+2)/7, this line is also $\frac{x-5}{4} = \frac{y+2}{7}$ or $y = \frac{7}{4} = \frac{43}{4}$.

Give an equation for the line through (5, -2) with direction vector [4, 7].

Give a vector equation for the line through (1,1) and (8,3).

2

chis Line.

Point: (1,1)

Dir. vec.: $\begin{bmatrix} 8 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 2 \end{bmatrix}$ is the arrow from (1,1) to (8,3).

We want a point on this line and a direction vector for

