Mach 1688

9 December 2021

Warm-up:
Subtraction, dot product, perpendicular vectors.
theadamabrams.com/live

Last week: lines

A direction vector for a line is a vector that is parallel to the line.
If we know

- a point on a line L and
- a direction vector for a line L,

$$
\vec{r} \text { means }\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { or }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$ then there is exactly one line L that fits both of these.

The line through the point \vec{p} with direction vector \vec{d} has equation

$$
\vec{r}=\vec{p}+t \vec{d}
$$

in $2 D$ or $3 D$!

$$
t \text { is any number }
$$

The points $\left[\begin{array}{l}3 \\ 1\end{array}\right]+t\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ are all on a straight line.

$$
\left[\begin{array}{c}
3 \\
1
\end{array}\right]+(-2)\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

The line is the collection $\left\{\left[\begin{array}{l}x \\ y\end{array}\right]:\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]+t\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right.$ for some $\left.t \in \mathbb{R}\right\}$ $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]+t\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is an equation for this line!

$$
\begin{aligned}
& \left.\left[\begin{array}{l}
3 \\
1
\end{array}\right]+3\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \quad\left[\begin{array}{l}
3 \\
1
\end{array}\right]+2.6\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right] \\
& {\left[\begin{array}{l}
3 \\
7
\end{array}\right]+2\left[\begin{array}{c}
-2 \\
-1
\end{array}\right]} \\
& {[3,1]+[-2,1]\left[\begin{array}{l}
3 \\
3
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]} \\
& {[-2,1] \quad\left[\begin{array}{l}
1 \\
{[1+0,2,[-2} \\
-1
\end{array}\right]}
\end{aligned}
$$

Lines

A direction vector for a line is a vector that is parallel to the line.
If we know

- a point on a line L and
- a direction vector for a line L,

$$
\vec{r} \text { means }\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { or }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$ then there is exactly one line L that fits both of these.

The line through the point \vec{p} with direction vector \vec{d} has equation

$$
\vec{r}=\vec{p}+t \vec{d}
$$

in $2 D$ or $3 D$!

Lines

The line in 2D through the point $\left(x_{0}, y_{0}\right)$ with direction vector $\vec{d}=[a, b]$ has parametric equations

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t .
\end{aligned}
$$

The line in 3D through the point $\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\vec{d}=[a, b, c]$ has parametric equations

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t . \\
& z=z_{0}+c t
\end{aligned}
$$

Give an equation for the line L_{1} that goes through the point $(6,2,1)$ and is parallel to the line

$$
L_{2}: \quad x=4+2 t, y=-1+4 t, z=5-t .
$$

The direction vector for L_{2} is $[2,4,-1]$ (because this is what is multiplied by b). That vector is parallel to L_{2}, and we want L_{1} to be parallel to L_{2}, so we want $[2,4,-1]$ to be parallel to L_{1}.
With $\vec{p}=[6,2,1]$ and $\vec{d}=[2,4,-1]$, we get $\vec{r}=\left[\begin{array}{c}6 \\ 2 \\ 1\end{array}\right]+t\left[\begin{array}{c}2 \\ 4 \\ -1\end{array}\right]$

$$
\text { or }\left[\begin{array}{l}
y=2+4 k \\
z=1-k
\end{array}\right.
$$

Line through point \vec{p} with direction vector \vec{d} has

 equation $\vec{r}=\vec{p}+t \vec{d}$.
Planes

It is possible to make parametric equations for planes, but it requires two parameters.

- Example: The plane through $(-2,7,6)$ parallel to both $\left[\begin{array}{c}1 \\ 4 \\ 10\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 3 \\ 7\end{array}\right]$
has parametric equations

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 \\
7 \\
6
\end{array}\right]+t\left[\begin{array}{c}
1 \\
4 \\
10
\end{array}\right]+s\left[\begin{array}{l}
3 \\
3 \\
7
\end{array}\right],
$$

which we can also write as

$$
\begin{aligned}
& x=-2+t+3 s \\
& y=7+4 t+3 s . \\
& z=6+10 t+7 s
\end{aligned}
$$

Planes

It is possible to make parametric equations for planes, but it requires two parameters.

However, an equation with only x, y, z (no t or s) will actually be simpler.

Planes

A normal vector for a plane is a vector that is perpendicular to the plane.

If we know

- a point on a plane P and
- a normal vector for a plane P, then there is exactly one plane P that fits both of these.

The plane through $(0,0,0)$ with normal vector $[3,1,5]$ looks like

Is $(-1,2,8)$ is on the plane through the origin with normal vector $[3,1,5]$?
IF the point $(-1,2,8)$ is on the plane through $(0,0,0)$ with normal vector $[3,1,5]$ then

- the arrow from $(0,0,0)$ to $(-1,2,8)$ is perpendicular to $[3,1,5]$.
- the vector $[-1,2,8]$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot[-1,2,8]$ equals 0 .
- $3(-1)+1(2)+5(8)=0$.
- $39=0$.

So we know that $(-1,2,8)$ is not on this plane.

IF the point $(4,-7,-1)$ is on the plane through $(0,0,0)$ with normal vector $[3,1,5]$ then

- the arrow from $(0,0,0)$ to $(4,-7,-1)$ is perpendicular to $[3,1,5]$.
- the vector $[4,-7,-1]$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot[4,-7,-1]$ equals 0 .
- $3(4)+1(-7)+5(-1)=0$.
- $0=0$.

So we know that $(4,-7,-1)$ is on this plane.

If the point (x, y, z) is on the plane through $(0,0,0)$ with normal vector $[3,1,5]$ then

- the arrow from $(0,0,0)$ to (x, y, z) is perpendicular to $[3,1,5]$.
- the vector $[x, y, z]$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot[x, y, z]$ equals 0 .
- $3 x+y+5 z=0$.

So " $3 x+y+5 z=0$ " is the equation for the plane through the origin normal to $[3,1,5]$!

The plane in 3D through $(0,0,0)$ with normal vector \vec{n} has equation

$$
\vec{n} \cdot \vec{r}=0 .
$$

If \vec{h} is $[a, b, c]$, this eqn is $a x+b y+c z=0$.

What if the plane does not go through $(0,0,0)$?
Is $(-9,8,2)$ is on the plane through $(4,1,1)$ with $\vec{n}=[3,1,5]$?
IF it is, then

- the arrow from $(4,1,1)$ to $(-9,8,2)$ is perpendicular to $[3,1,5]$.
- the vector $([-9,8,2]-[4,1,1])$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot([-9,8,2]-[4,1,1])$ equals 0 .
- $3(-9-4)+1(8-1)+5(2-1)=0$.

What if the plane does not go through $(0,0,0)$?
Is $(-9,8,2)$ is on the plane through $(4,1,1)$ with $\vec{n}=[3,1,5]$?
IF it is, then

- the arrow from $(4,1,1)$ to $(-9,8,2)$ is perpendicular to $[3,1,5]$.
- the vector $([-9,8,2]-[4,1,1])$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot([-9,8,2]-[4,1,1])$ equals 0 .
- $3(-9-4)+1(8-1)+5(2-1)=0$.

What if the plane does not go through $(0,0,0)$?
Is (x, y, z) is on the plane through $(4,1,1)$ with $\vec{n}=[3,1,5]$?
IF it is, then

- the arrow from $(4,1,1)$ to (x, y, z) is perpendicular to $[3,1,5]$.
- the vector $([x, y, z]-[4,1,1])$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot([x, y, z]-[4,1,1])$ equals 0 .
- $3(x-4)+1(y-1)+5(z-1)=0$.

Planes

A normal vector for a plane is a vector that is perpendicular to the plane.
vector The plane through the point \vec{p} with normal vector \vec{n}
form has equation

$$
\vec{n} \cdot(\vec{r}-\vec{p})=0
$$

scalar The plane through point $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector form [a, b, c] has equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
$$

Give an equation without vectors for the plane through $(12,4,-3)$ normal to $[-2,8,8]$.

With vectors,

$$
\left[\begin{array}{c}
-2 \\
8 \\
8
\end{array}\right] \cdot\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]-\left[\begin{array}{c}
12 \\
4 \\
-3
\end{array}\right]\right)=0
$$

Without vectors,

$$
\begin{array}{cc}
-2(x-12)+8(y-4)+8(z+3)=0 \\
\text { or } & -2 x+8 y+8 z=-16 \\
& x-4 y-4 z=8
\end{array}
$$

Give an equation for the plane through the origin perpendicular to the line

$$
\mathrm{L}: \quad \vec{r}=\left[\begin{array}{c}
-2+10 t \\
9+t \\
-4-2 t
\end{array}\right]
$$

The direction vector for the line is $[10,1,-2]$.
That vector is parallel to the line, and the line is perpendicular lo our plane, so we can use $[10,1,-2]$ as the normal vector for our plane.

$$
[10,1,-2] \cdot \vec{r}=0 \text { or } 10 x+y-2 z=0
$$

If we wanted an equation $x+\ldots y+\ldots z=\ldots$ for the plane through $(-2,7,6)$ parallel to both $[1,4, \overline{10}]$ and $[3,3, \overline{7]}$, we would need - a point on the plane use $(-2,7,6)$

- a normal vector for the plane.
- This vector will be perpendicular to both $[1,4,10]$ and $[3,3,7]$.

Cross produck

For 3D vectors only, the cross product of \vec{a} and \vec{b}, written $\vec{a} \times \vec{b}$, is the vector that is

- perpendicular to both \vec{a} and \vec{b} and
- has length $|\vec{a}||\vec{b}| \sin$ (angle between \vec{a} and \vec{b}) and - follows the "Right-Hand Rule".

The formula is ugly:

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right] .
$$

This slide intentionally blank.

Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=s \vec{v}+t \vec{w}
$$

for some numbers s, t.

- For more vectors, \vec{u} is a linear combination of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ if

$$
\vec{u}=s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}
$$

for some numbers s_{1}, \ldots, s_{n}.

Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=s \vec{v}+t \vec{w}
$$

for some numbers s, t.
Example 1: Write $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ as a linear combination of $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{l}0 \\ 8\end{array}\right]$.
$s\left[\begin{array}{l}1 \\ 4\end{array}\right]+t\left[\begin{array}{l}0 \\ 8\end{array}\right]=\left[\begin{array}{c}s \\ 4 s+8 t\end{array}\right]$. For this to equal $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ we need $s=s$.
Then $4(5)+8 t=24$, so $8 t=4$, so $t=1 / 2$.

$$
5\left[\begin{array}{l}
1 \\
4
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
8
\end{array}\right]
$$

Example 2: $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ cannot be written as a linear combination of $\overrightarrow{v_{1}}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$
and $\overrightarrow{v_{2}}=\left[\begin{array}{c}10 \\ 2\end{array}\right]$. Why?
Using equations:

$$
s\left[\begin{array}{l}
s \\
1
\end{array}\right]+t\left[\begin{array}{c}
10 \\
2
\end{array}\right]=\left[\begin{array}{c}
s s+10 t \\
s+2 t
\end{array}\right]=\left[\begin{array}{c}
s(s+2 t) \\
s+2 t
\end{array}\right]=(s+2 k)\left[\begin{array}{l}
s \\
1
\end{array}\right]
$$

To get " $n\left[\begin{array}{l}5 \\ 1\end{array}\right]=\left[\begin{array}{c}6 \\ 24\end{array}\right]$ " would require $n=1$ and $n=3$ at the same, which is impossible.

from 3Blue1Brown - youtu.be/k7RM-ot2NWY

span

The span of some vectors is the collection of all linear combinations of the vectors.

- For two vectors,

$$
\operatorname{span}(\vec{v}, \vec{w})=\{s \vec{v}+t \vec{w}: s, t \in \mathbb{R}\}
$$

Earlier we saw that $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ cannot be written as a linear combination of $\left[\begin{array}{l}5 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}10 \\ 2\end{array}\right]$. We can say " $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ is not in the span of $\left[\begin{array}{l}5 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}10 \\ 2\end{array}\right]$."

Span

The span of some vectors is the collection of all linear combinations of the vectors.

- For two vectors,

$$
\operatorname{span}(\vec{v}, \vec{w})=\{s \vec{v}+t \vec{w}: s, t \in \mathbb{R}\}
$$

is usually a plane, but it might be a line or just the origin.

- For three vectors, what shape is

$$
\operatorname{span}(\vec{u}, \vec{v}, \vec{w})=\{r \vec{u}+s \vec{v}+t \vec{w}: r, s, t \in \mathbb{R}\} ?
$$

- If \vec{u}, \ldots are 2D vectors, this can still be only a point, line, or plane.
- If \vec{u}, \ldots are 3D vectors, this can be a point, line, plane, or 3D space.

