Linear Algebra, Winter 2021

List 1

Algebra review, trig values, complex numbers.

1. Classify each of the following as an "expression", "equation", or "inequality".
(a) $5 x^{2}+2$
(e) $9 x^{3}-5+i \leq 0$
(b) $8=9$
(f) $9 x^{3}-5+i>0$
(c) $3 x^{5}-\sqrt{x}$
(g) $9 x^{3}-5+i=0$
(d) $\sin (\pi)$
(h) $4^{x}=2 x-17$
2. Which of the following are true for all real values of the variables?
(a) $2 x=x+x$
(f) $-(a+b)^{2}=(-a+b)^{2}$
(b) $2(x+y)=2 x+y$
(g) $x^{3}+3 x=x+x$
(c) $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(h) $k^{-2}=1 / k^{2}$
(d) $(6+a) / 2=3+a / 2$
(i) $x^{a+2}=x^{a} \times x^{2}$
3. Compute the following values:
(a) $\cos (0)$
(e) $\cos \left(60^{\circ}\right)$
(i) $\sin \left(120^{\circ}\right)$
(m) $\cos \left(315^{\circ}\right)$
(b) $\sin (0)$
(f) $\cos (\pi / 3)$
(j) $\sin (5 \pi / 6)$
(n) $\cos \left(-45^{\circ}\right)$
(c) $\cos \left(30^{\circ}\right)$
(g) $\cos (\pi / 2)$
(k) $\sin \left(180^{\circ}\right)$
(o) $\cos \left(675^{\circ}\right)$
(d) $\cos \left(45^{\circ}\right)$
(h) $\sin (\pi / 2)$
($\ell) \sin (4 \pi / 3)$
(p) $\arccos \left(\frac{\sqrt{3}}{2}\right)$

The number " i " satisfies $i \times i=-1$. If a and b are any real numbers (including zero), then the number " $a+b i$ " is called a complex number. The real part of this number is a, the imaginary part of this number is b, and the conjugate of this number is $a-b i$.

For a complex number z, we write $\operatorname{Re}(z)$ for its real part, $\operatorname{Im}(z)$ for its imaginary part, and \bar{z} (spoken as " z bar") for its conjugate.
4. Write the following in rectangular form $a+b i$ (also called Cartesian form):
(a) $(-6+5 i)+(2-4 i)$
(f) $(1-2 i)^{3}$
(k) $\overline{12}$
(b) $(1+2 i)(2+3 i)$
(g) $(-2 i)^{6}$
(ℓ) $(2-3 i)(\overline{2-3 i})$
(c) $(-5+2 i)-(2-i)$
(h) $\overline{5+6 i}$
(m) $\operatorname{Re}(2 i-7)$
(d) $(2-3 i)(2+3 i)$
(i) $\overline{-1-9 i}$
(n) $\operatorname{Im}((3+2 i)(5 i))$
(e) $(1+i)(2-i)(3+2 i)$
(j) $\overline{3 i}$
(o) $\operatorname{Re}\left(i^{2}\right)$
5. Write $\frac{1+2 i}{2-3 i}$ in the form $a+b i$.

The modulus of z, written $|z|$, is the distance between z and 0 on the complex plane (that is, between $(0,0)$ and (a, b) on an $x y$-plane). The argument of z, written $\arg (z)$, is the angle between the positive real axis and the line from 0 to z.

We write $r \cdot e^{(\theta \cdot i)}$ for the complex number $r \cos (\theta)+r \sin (\theta) i$.
Notice that $r e^{\theta i}$ has modulus r and argument θ.
6. Compute $|1-\sqrt{3} i|$ and $\arg (1-\sqrt{3} i)$.
7. Write the following numbers in polar form $r e^{i \theta}$ (also called trigonometric form):
(a) $-3 i$
(b) $1+\sqrt{3} i$
(c) $2-2 \sqrt{3} i$
(d) $\frac{\sqrt{3}-i}{7}$
(e) $\cos \left(\frac{5}{11} \pi\right)+i \sin \left(\frac{5}{11} \pi\right)$
(f) $\sqrt{-1}$
8. Write the following in rectangular form:
(a) $e^{\frac{\pi}{4} i}$
(b) $2 e^{i \pi / 6}$
(c) $5 e^{-i \pi / 3}$
(d) $-8 e^{\pi i}$
(e) $\sqrt{9}+\sqrt{-9}$
9. Write each number in both rectangular and polar form:
(a)

(b)

(c)

(d)

(e)

(f)

10. On a complex plane, draw the number(s)...
(a) $\frac{1+i}{\sqrt{2}}$ and $\frac{-1-i}{\sqrt{2}}$
(b) $\frac{1-i}{\sqrt{2}}$ and $\frac{-1+i}{\sqrt{2}}$
(c) $3-i$
(d) $\sqrt{2}-\sqrt{2} i$ and $-\sqrt{2}+\sqrt{2} i$
(e) $-\frac{19}{29}-\frac{25}{29} i$
(f) $3-i$ and $3+i$
(g) $\frac{1-25 i}{6}$
(h) $i-\sqrt{2}$ and $i+\sqrt{2}$
11. Compute the modulus (also called Euclidean norm) of the number...
(a) $2+7 i$
(b) $\frac{4+i}{3+2 i}$
(c) $(1+\sqrt{2} i)$
(d) $\frac{(3-i \sqrt{3})^{2}}{(\sqrt{2}+2 i)^{3}}$

