List 1

Algebra review, trig values, complex numbers.

1. Classify each of the following as an "expression", "equation", or "inequality".

(a)
$$5x^2 + 2$$

(b)
$$8 = 9$$

(c)
$$3x^5 - \sqrt{x}$$

(d)
$$\sin(\pi)$$

(e)
$$9x^3 - 5 + i \le 0$$

(f)
$$9x^3 - 5 + i > 0$$

(g)
$$9x^3 - 5 + i = 0$$

(h)
$$4^x = 2x - 17$$

2. Which of the following are true for all real values of the variables?

(a)
$$2x = x + x$$

(b)
$$2(x+y) = 2x + y$$

(c)
$$(x-y)^2 = x^2 - 2xy + y^2$$

(d)
$$(6+a)/2 = 3 + a/2$$

(e)
$$-(y+2) = -y+2$$

(f)
$$-(a+b)^2 = (-a+b)^2$$

(g)
$$x^3 + 3x = x + x$$

(h)
$$k^{-2} = 1/k^2$$

(i)
$$x^{a+2} = x^a \times x^2$$

3. Compute the following values:

(a)
$$\cos(0)$$

(e)
$$\cos(60^{\circ})$$

(i)
$$\sin(120^{\circ})$$
 (m) $\cos(315^{\circ})$

(b)
$$\sin(0)$$

(f)
$$\cos(\pi/3)$$

(j)
$$\sin(5\pi/6)$$

(n)
$$\cos(-45^{\circ})$$

(c)
$$\cos(30^{\circ})$$

(g)
$$\cos(\pi/2)$$

$$(k) \sin(180^{\circ})$$

(o)
$$\cos(675^{\circ})$$

(d)
$$\cos(45^\circ)$$

(h)
$$\sin(\pi/2)$$

$$(\ell) \sin(4\pi/3)$$

(p)
$$\arccos(\frac{\sqrt{3}}{2})$$

The number "i" satisfies $i \times i = -1$. If a and b are any real numbers (including zero), then the number "a + bi" is called a **complex number**. The **real part** of this number is a, the **imaginary part** of this number is b, and the **conjugate** of this number is a - bi.

For a complex number z, we write Re(z) for its real part, Im(z) for its imaginary part, and \overline{z} (spoken as "z bar") for its conjugate.

4. Write the following in rectangular form a + bi (also called Cartesian form):

(a)
$$(-6+5i)+(2-4i)$$
 (f) $(1-2i)^3$

(f)
$$(1-2i)^3$$

$$(k) \overline{12}$$

(b)
$$(1+2i)(2+3i)$$
 (g) $(-2i)^6$

(g)
$$(-2i)^6$$

$$(\ell) (2-3i)(\overline{2-3i})$$

(c)
$$(-5+2i)-(2-i)$$
 (h) $\overline{5+6i}$

(h)
$$\overline{5+6}$$

(m)
$$Re(2i-7)$$

(d)
$$(2-3i)(2+3i)$$
 (i) $\overline{-1-9i}$

(i)
$$\frac{-1-9i}{}$$

(n) Im
$$((3+2i)(5i))$$

(e)
$$(1+i)(2-i)(3+2i)$$
 (j) $\overline{3i}$

(i)
$$\overline{3i}$$

(o)
$$\operatorname{Re}(i^2)$$

5. Write $\frac{1+2i}{2-3i}$ in the form a+bi.

The **modulus** of z, written |z|, is the distance between z and 0 on the complex plane (that is, between (0,0) and (a,b) on an xy-plane). The **argument** of z, written arg(z), is the angle between the positive real axis and the line from 0 to z.

We write $r \cdot e^{(\theta \cdot i)}$ for the complex number $r \cos(\theta) + r \sin(\theta) i$. Notice that $re^{\theta i}$ has modulus r and argument θ .

- 6. Compute $|1 \sqrt{3}i|$ and $\arg(1 \sqrt{3}i)$.
- 7. Write the following numbers in polar form $re^{i\theta}$ (also called trigonometric form):
 - (a) -3i
 - (b) $1 + \sqrt{3}i$
 - (c) $2 2\sqrt{3}i$
 - (d) $\frac{\sqrt{3}-i}{7}$
 - (e) $\cos(\frac{5}{11}\pi) + i\sin(\frac{5}{11}\pi)$
 - (f) $\sqrt{-1}$
- 8. Write the following in rectangular form:
 - (a) $e^{\frac{\pi}{4}i}$
 - (b) $2e^{i\pi/6}$
 - (c) $5e^{-i\pi/3}$
 - (d) $-8e^{\pi i}$
 - (e) $\sqrt{9} + \sqrt{-9}$
- 9. Write each number in both rectangular and polar form:

- 10. On a complex plane, draw the number(s)...
 - (a) $\frac{1+i}{\sqrt{2}}$ and $\frac{-1-i}{\sqrt{2}}$
 - (b) $\frac{1-i}{\sqrt{2}}$ and $\frac{-1+i}{\sqrt{2}}$
 - (c) 3 i
 - (d) $\sqrt{2} \sqrt{2}i$ and $-\sqrt{2} + \sqrt{2}i$
 - (e) $-\frac{19}{29} \frac{25}{29}i$
 - (f) 3 i and 3 + i
 - (g) $\frac{1-25i}{6}$
 - (h) $i \sqrt{2}$ and $i + \sqrt{2}$
- 11. Compute the modulus (also called Euclidean norm) of the number...
 - (a) 2 + 7i
 - $(b) \ \frac{4+i}{3+2i}$
 - (c) $(1 + \sqrt{2}i)$
 - (d) $\frac{(3-i\sqrt{3})^2}{(\sqrt{2}+2i)^3}$