Linear Algebra, Winter 2021

List 2

Complex numbers, intro to polynomials.
12. For $z=\frac{\sqrt{7}}{2}+\frac{\sqrt{11}}{3} i$, calculate $z+\bar{z} . \sqrt{7}$
13. For $z=9 e^{(\pi / 8) i}$, calculate $z \cdot \bar{z}$. 81
14. For $z=6 e^{(\pi / 52) i}$ and $w=3 e^{(-\pi / 52) i}$, calculate $z w$. Give your answer in rectangular form. 18
15. For $z=1+i$ and $w=e^{(\pi / 4) i}$, calculate
(a) $\arg (z) \pi / 4$
(b) $\arg (w) \pi / 4$
(c) $\arg (z w) \pi / 2$
(d) $z+w\left(1+\frac{1}{\sqrt{2}}\right)+\left(1+\frac{1}{\sqrt{2}}\right) i$ or $(1+\sqrt{2}) e^{(\pi / 4) i}$
(e) $|w| 1$
(f) $|z-w| \sqrt{2}-1$
(g) $|z w| \sqrt{2}$
(h) $| z / w | \longdiv { \sqrt { 2 } }$
(i) $z w \longdiv { \sqrt { 2 } i }$
(j) $z / w \sqrt{2}$
$(\mathrm{k}) z \bar{w} \sqrt{2}$
($\ell) \overline { z } w \longdiv { \sqrt { 2 } }$
16. Which of the points A - E below could be $z+w$? Which could be $z w$?

D is $z+w . \mathrm{B}$ is the only option that could be $z w$.
17. Write $(1+i)^{11} \boxed{-32+32 i}$ and $\left(\frac{\sqrt{3}-i}{1+i}\right)^{6} \boxed{-2+2 i}$ in rectangular form. (Hint: use de Moivre's formula.)
18. (a) On a real number line (like the blank one shown below), put a dot at every point x for which $x^{6}=1$.

(b) On a complex plane (like the blank one shown below), put a dot at every point z for which $z^{6}=1$.

19. A cannonball fired at $400 \mathrm{~m} / \mathrm{s}$ at an angle of 52° will have an initial vertical velocity of $400 \sin \left(52^{\circ}\right) \approx 315.2 \mathrm{~m} / \mathrm{s}$, and it will have a height of

$$
h(t)=\frac{-9.8}{2} t^{2}+315.2 t
$$

meters after t seconds. How many seconds will it take for the cannonball to reach the ground?
Without a calculator, $\frac{2 \times 315.2}{9.8}$ is good enough. With calculator, 64.3265.
20. If the width of a rectangle is 5 m more than its length, and the rectangle's area is $84 \mathrm{~m}^{2}$, what are the length and width of the rectangle?
The solutions to $x(x+5)=84$ are $x=7$ and $x=-12$, but length cannot be negative. The length is 7 and so the width is 12 .
21. The product of two positive consecutive ${ }^{1}$ integers is 380 . Find the two numbers. The solutions to $x(x+1)=380$ are $x=19$ and $x=-20$, but the numbers must be positive, so they are 19 and 20 .

A polynomial in the variable x is a function that can be written in the form

$$
_^{n}+\ldots x^{n-1}+\cdots+\ldots x^{2}+\ldots x+\ldots,
$$

where each blank - called a coefficient - is a real or complex number (possibly including 0). The degree of a polynomial in x is the highest power of x that has a non-zero coefficient.

[^0]22. For each of the following, give the degree if the expression is a polynomial in x, and otherwise write "not a polynomial".
(a) $\frac{5}{2} x^{3}-7 x+8$ degree 3
(b) $9 x^{10}$ degree 10
(c) $6 x^{5}+\frac{1}{3} x+5 x^{-2}$ not a polynomial
(d) $3 x^{2}+\sin (x)$ not a polynomial
(e) $\left(x^{2}+2 x-1\right)^{3}$ degree 6
(f) $5 x$ degree 1
(g) 5 degree 0
(h) $\frac{8 x+1}{2 x}$ not a polynomial
(i) $\frac{x^{3}+7 x}{2}$ degree 3

[^0]: ${ }^{1}$ For example, the numbers 107 and 108 are consecutive.

