Linear Algebra, Winter 2021 List 2

Complex numbers, intro to polynomials.

- 12. For $z = \frac{\sqrt{7}}{2} + \frac{\sqrt{11}}{3}i$, calculate $z + \overline{z}$. $\sqrt{7}$
- 13. For $z = 9e^{(\pi/8)i}$, calculate $z \cdot \overline{z}$. 81
- 14. For $z = 6e^{(\pi/52)i}$ and $w = 3e^{(-\pi/52)i}$, calculate zw. Give your answer in rectangular form. 18

15. For
$$z = 1 + i$$
 and $w = e^{(\pi/4)i}$, calculate

(a) $\arg(z) \pi/4$ (b) $\arg(w) \pi/4$ (c) $\arg(zw) \pi/2$ (d) $z + w \left(1 + \frac{1}{\sqrt{2}}\right) + \left(1 + \frac{1}{\sqrt{2}}\right)i$ or $(1 + \sqrt{2})e^{(\pi/4)i}$ (e) |w| 1 (f) $|z - w| \sqrt{2} - 1$ (g) $|zw| \sqrt{2}$ (h) $|z/w| \sqrt{2}$ (i) $zw \sqrt{2}i$ (j) $z/w \sqrt{2}$ (k) $z\overline{w} \sqrt{2}$ (l) $\overline{z}w \sqrt{2}$

16. Which of the points A - E below could be z + w? Which could be zw?

D is z + w. B is the only option that could be zw.

17. Write $(1+i)^{11}$ -32+32i and $\left(\frac{\sqrt{3}-i}{1+i}\right)^6$ -2+2i in rectangular form. (Hint: use de Moivre's formula.)

18. (a) On a real number line (like the blank one shown below), put a dot at every point x for which $x^6 = 1$.

(b) On a complex plane (like the blank one shown below), put a dot at every point z for which $z^6 = 1$.

19. A cannonball fired at 400 m/s at an angle of 52° will have an initial vertical velocity of $400 \sin(52^{\circ}) \approx 315.2 \text{ m/s}$, and it will have a height of

$$h(t) = \frac{-9.8}{2}t^2 + 315.2\,t$$

meters after t seconds. How many seconds will it take for the cannonball to reach the ground?

Without a calculator, $\boxed{\frac{2 \times 315.2}{9.8}}$ is good enough. With calculator, $\boxed{64.3265}$.

20. If the width of a rectangle is 5 m more than its length, and the rectangle's area is 84 m^2 , what are the length and width of the rectangle?

The solutions to x(x+5) = 84 are x = 7 and x = -12, but length cannot be negative. The length is 7 and so the width is 12.

21. The product of two positive consecutive¹ integers is 380. Find the two numbers. The solutions to x(x+1) = 380 are x = 19 and x = -20, but the numbers must be positive, so they are 19 and 20.

A **polynomial** in the variable x is a function that can be written in the form

 $\underline{}^{n} + \underline{}^{n-1} + \dots + \underline{}^{2} + \underline{} + \underline{},$

where each blank—called a **coefficient**—is a real or complex number (possibly including 0). The **degree** of a polynomial in x is the highest power of x that has a non-zero coefficient.

¹For example, the numbers 107 and 108 are consecutive.

- 22. For each of the following, give the degree if the expression is a polynomial in x, and otherwise write "not a polynomial".
 - (a) $\frac{5}{2}x^3 7x + 8$ degree 3 (b) $9x^{10}$ degree 10 (c) $6x^5 + \frac{1}{3}x + 5x^{-2}$ not a polynomial (d) $3x^2 + \sin(x)$ not a polynomial (e) $(x^2 + 2x - 1)^3$ degree 6 (f) 5x degree 1 (g) 5 degree 0 (h) $\frac{8x + 1}{2x}$ not a polynomial (i) $\frac{x^3 + 7x}{2}$ degree 3