List 3

Polynomials

The number c is a zero (also called a root) of the polynomial $f(z)$ if $f(c)=0$.
23. For the polynomial

$$
f(z)=z^{4}+z^{3}+z^{2}+3 z-6=\left(z^{2}+z-2\right)\left(z^{2}+3\right),
$$

(a) find all roots of $f(z) \cdot-2,1, i \sqrt{3},-i \sqrt{3}$
(b) find all zeroes of $f(z)$. (same as \#23(a))
(c) solve $f(z)=0$ for complex $z \cdot z=-2, z=1, z=\sqrt{3} i, z=-\sqrt{3} i$
(d) factor $f(z)$ into irreducible complex factors. $(z+2)(z-1)(z-\sqrt{3} i)(z+\sqrt{3} i)$
(e) list all polynomials of the form $z+\ldots$ for which the remainder when dividing $f(z)$ by these polynomials is 0 . (same as \#23(d))
24. Given that 4 is one root of $z^{3}-4 z^{2}+49 z-196$, find all the roots of this polynomial. $4,7 i,-7 i$
25. Given that $3-i$ is one root of $z^{3}+2 z^{2}-38 z+80$, find all the roots of this polynomial. $3-i, 3+i,-8$
26. Given that $1+2 i$ is one root of $z^{4}-4 z^{3}+12 z^{2}-16 z+15$, find all the roots of this polynomial.
$1-2 i$ must also be a root.
$\frac{z^{4}-4 z^{3}+12 z^{2}-16 z+15}{(z-(1+2 i))(z-(1-2 i))}$ must be a polynomial.
$\frac{z^{4}-4 z^{3}+12 z^{2}-16 z+15}{z^{2}-2 z+5}$ must be a polynomial.
Long division:

So $\frac{z^{4}-4 z^{3}+12 z^{2}-16 z+15}{z^{2}-2 z+5}=z^{2}-2 z+3$.
By the QF, the roots of $z^{2}-2 z+3$ are $\frac{2 \pm \sqrt{4-12}}{2}=1 \pm i \sqrt{2}$.
The roots of the original polynomial are $1+2 i, 1-2 i, 1+i \sqrt{2}, 1-i \sqrt{2}$.

For any two polynomials f and g, there exist unique polynomials Q and R such that $f=Q \cdot g+r$ and either $R(x)=0$ or the degree of R is less than the degree of g. The quotient of f divided by g is $Q(x)$, and the remainder of f divided by g is $R(x)$.
27. Using the fact that

$$
\frac{7 x^{4}+2 x^{3}-8}{x^{2}-4}=7 x^{2}+2 x+28+\frac{8 x+104}{x^{2}-4}
$$

find polynomials $Q(x)$ and $R(x)$ such that

$$
7 x^{4}+2 x^{3}-8=\left(x^{2}-4\right) \cdot Q(x)+R(x)
$$

$Q(x)=7 x^{2}+2 x+28, \quad R(x)=8 x+104$ are the quotient and remainder. Since the problem did not specify that R must have degree less than the the degree of $x^{2}-4$, there are technically many other correct answers to $\# 27$.
28. Find the quotient and remainder when $7 x^{4}+2 x^{3}-8$ is divided by $x^{2}-4$.

Quotient: $7 x^{2}+2 x+35$. Remainder: $10 x+167$.
29. (a) If f is a polynomial of degree 8 , and g is a polynomial of degree 5 , and g is not a factor of f, then what are the possible values for the degree of the remainder $R(x)$ of f divided by g ? $0,1,2,3,4$
(b) If f is a polynomial of degree 8 , and g is a polynomial of degree 1 , and g is not a factor of f, then what are the possible values for the degree of the remainder $R(x)$ of f divided by g ? 0
30. Find the remainder when $\frac{1}{12} x^{4}+3 x^{3}-7 x+9$ is divided by $x-2 . \frac{61}{3}$
31. Find the value of a for which the remainder of $x^{3}+(1-3 a) x^{2}+\left(2+a^{2}\right) x-20$ divided by $x-4$ is as small as possible.
$4 a^{2}-48 a+68$ is minimal for $a=6$.
A polynomial is called irreducible if it is not the product of two non-constant polynomials.
32. Factor the following polynomials into irreducible real factors:
(a) $x^{3}+x^{2}+x+1(x+1)\left(x^{2}+1\right)$
(b) $x^{3}+x^{2}-x-1(x+1)(x+1)(x-1)$ or $(x+1)^{2}(x-1)$
(c) $x^{4}-4 x^{3}+8 x x(x-2)\left(x^{2}-2 x-4\right)$
(d) $x^{4}+5 x^{2}+6\left(x^{2}+2\right)\left(x^{2}+3\right)$
33. Factor the following polynomials into irreducible complex factors:
(a) $z^{3}+z^{2}+z+1(z+1)(z+i)(z-i)$
(b) $z ^ { 3 } + z ^ { 2 } - z - 1 \longdiv { (z + 1) (z + 1) (z - 1) \text { or } (z + 1) ^ { 2 } (z - 1) }$
(c) $z^{4}-4 z^{3}+8 z z(z-2)(z-\sqrt{5}+1)(z+\sqrt{5}-1)$
(d) $z^{4}+5 z^{2}+6(z+i \sqrt{2})(z-i \sqrt{2})(z+i \sqrt{3})(z-i \sqrt{3})$
34. The figure below shows four points on the complex plane.

Give an example of a polynomial of degree 4 whose roots are exactly these four points.
$(z+3)(z-(2+2 i))(z-(2-2 i))(z-1)$ or $z^{4}-2 z^{3}-3 z^{2}+28 z-24$ or scalar multiples of these (e.g., $100 z^{4}-200 z^{3}-300 z^{2}+2800 z-2400$).
35. The figure below shows three points on the complex plane.

For which values of d does there exist a complex polynomial of degree d whose roots are exactly these three points? All $d \geq 3$
36. The figure below shows four points on the complex plane.

(a) Does there exist a polynomial with real coefficients whose roots are exactly these four points? Why or why not? No because if a real polyn. has $1+i$ as a root it must also have $\overline{1+i}=1-i$.
(b) Does there exist a polynomial with complex coefficients whose roots are exactly these four points? Why or why not? Yes: $\left(z-c_{1}\right) \cdots\left(z-c_{4}\right)$ always works.
37. (a) For $f(x)=(z-3)^{4}(z+2)$, what is the multiplicity of 3 ? 4
(b) For $f(x)=z^{3}+2 z^{2}-7 z+4$, what is the multiplicity of 1 ? 2
38. The only roots of $z^{5}-4 z^{4}+z^{3}+10 z^{2}-4 z-8$ are -1 (with some multiplicity) and +2 (with some multiplicity). What is the sum of these multiplicities? 5
39. The polynomial $f(z)=3 z^{6}-25 z^{5}+62 z^{4}-132 z^{3}+89 z^{2}-107 z+30$ has no repeated roots. How many monic linear polynomials are factors of $f(z)$? 6
40. (a) Write $\frac{5 x+6}{x^{2}-6 x+8}$ as a sum of partial fractions. $\frac{13}{x-4}+\frac{-8}{x-2}$ (b) Write $\frac{36}{x^{3}+9 x^{2}+18 x}$ as a sum of partial fractions. $\frac{2}{x+6}+\frac{-4}{x+3}+\frac{2}{x}$
41. Given that $2 x^{3}-13 x^{2}+26 x-10=(2 x-1)\left(x^{2}-6 x+10\right)$, write $\frac{29}{2 x^{3}-13 x^{2}+26 x-10}$ as a sum of partial fractions.
$\frac{-2 x+11}{x^{2}-6 x+10}+\frac{4}{2 x-1}$

