List 3

Polynomials

The number c is a zero (also called a root) of the polynomial $f(z)$ if $f(c)=0$.
23. For the polynomial

$$
f(z)=z^{4}+z^{3}+z^{2}+3 z-6=\left(z^{2}+z-2\right)\left(z^{2}+3\right),
$$

(a) find all roots of $f(z)$.
(b) find all zeroes of $f(z)$.
(c) solve $f(z)=0$ for complex z.
(d) factor $f(z)$ into irreducible complex factors.
(e) list all linear monic polynomials $g(z)$ for which the remainder when dividing $f(z)$ by $g(z)$ is 0.
24. Given that 4 is one root of $z^{3}-4 z^{2}+49 z-196$, find all the roots of this polynomial.
25. Given that $3-i$ is one root of $z^{3}+2 z^{2}-38 z+80$, find all the roots of this polynomial.
26. Given that $1+2 i$ is one root of $z^{4}-4 z^{3}+12 z^{2}-16 z+15$, find all the roots of this polynomial.
For any two polynomials f and g, there exist unique polynomials Q and R such that $f=Q \cdot g+r$ and either $R(x)=0$ or the degree of R is less than the degree of g. The quotient of f divided by g is $Q(x)$, and the remainder of f divided by g is $R(x)$.
27. Using the fact that

$$
\frac{7 x^{4}+2 x^{3}-8}{x^{2}-4}=7 x^{2}+2 x+28+\frac{8 x+104}{x^{2}-4}
$$

find polynomials $q(x)$ and $r(x)$ such that

$$
7 x^{4}+2 x^{3}-8=\left(x^{2}-4\right) \cdot q(x)+r(x) .
$$

28. Find the quotient and remainder when $7 x^{4}+2 x^{3}-8$ is divided by $x^{2}-4$.
29. (a) If f is a polynomial of degree 8 , and g is a polynomial of degree 5 , and g is not a factor of f, then what are the possible values for the degree of the remainder $R(x)$ of f divided by g ?
(b) If f is a polynomial of degree 8 , and g is a polynomial of degree 1 , and g is not a factor of f, then what are the possible values for the degree of the remainder $R(x)$ of f divided by g ?
30. Find the remainder when $\frac{1}{12} x^{4}+3 x^{3}-7 x+9$ is divided by $x-2$.
31. Find the value of a for which the remainder of $x^{3}+(1-3 a) x^{2}+\left(2+a^{2}\right) x-20$ divided by $x-4$ is as small as possible.
A polynomial is called irreducible if it is not the product of two non-constant polynomials.
32. Factor the following polynomials into irreducible real factors:
(a) $x^{3}+x^{2}+x+1$
(b) $x^{3}+x^{2}-x-1$
(c) $x^{4}-4 x^{3}+8 x$
(d) $x^{4}+5 x^{2}+6$
33. Factor the following polynomials into irreducible complex factors:
(a) $z^{3}+z^{2}+z+1$
(b) $z^{3}+z^{2}-z-1$
(c) $z^{4}-4 z^{3}+8 z$
(d) $z^{4}+5 z^{2}+6$
34. The figure below shows four points on the complex plane.

Give a monic polynomial of degree 4 whose roots are exactly these four points.
35. The figure below shows three points on the complex plane.

For which values of d does there exist a complex polynomial of degree d whose roots are exactly these three points?
36. The figure below shows four points on the complex plane.

(a) Does there exist a polynomial with real coefficients whose roots are exactly these four points? Why or why not?
(b) Does there exist a polynomial with complex coefficients whose roots are exactly these four points? Why or why not?
37. (a) For $f(x)=(z-3)^{4}(z+2)$, what is the multiplicity of 3 ?
(b) For $f(x)=z^{3}+2 z^{2}-7 z+4$, what is the multiplicity of 1 ?
38. The only roots of $z^{5}-4 z^{4}+z^{3}+10 z^{2}-4 z-8$ are -1 (with some multiplicity) and +2 (with some multiplicity). What is the sum of these multiplicities?
39. The polynomial $f(z)=3 z^{6}-25 z^{5}+62 z^{4}-132 z^{3}+89 z^{2}-107 z+30$ has no repeated roots. How many linear polynomials are factors of $f(z)$?
40. (a) Write $\frac{5 x+6}{x^{2}-6 x+8}$ as a sum of partial fractions.
(b) Write $\frac{36}{x^{3}+9 x^{2}+18 x}$ as a sum of partial fractions.
41. Given that $2 x^{3}-13 x^{2}+26 x-10=(2 x-1)\left(x^{2}-6 x+10\right)$, write $\frac{29}{2 x^{3}-13 x^{2}+26 x-10}$ as a sum of partial fractions.

