Linear Algebra, Winter 2021

List 4

Extra practice: complex numbers and polynomials.
42. (a) Simplify $x^{9} \cdot x^{4} \cdot x^{9+4}=x^{13}$
(b) Simplify $e^{9} \cdot e^{4} \cdot e^{9+4}=e^{13}$
(c) Simplify $5 e^{90} \cdot 7 e^{40} \cdot(5 \cdot 7) e^{90+40}=35 e^{130}$
(d) Simplify $5 e^{9 i} \cdot 7 e^{4 i}$. $(5 \cdot 7) e^{9 i+4 i}=35 e^{(9+4) i}=35 e^{13 i}$
(e) Simplify $5 e^{(\pi / 6) i} \cdot 7 e^{(\pi / 2) i} \cdot(5 \cdot 7) e^{(\pi / 6) i+(\pi / 2) i}=35 e^{(2 \pi / 3) i}$
43. [fast] With $z=2 \sqrt{3} e^{(\pi / 3) i}=\sqrt{3}+3 i$ and $w=2 e^{(\pi / 6) i}=\sqrt{3}+i$, compute $\frac{z}{w}$, giving your answer in either polar form or rectangular form (your choice).
$\frac{2 \sqrt{3} e^{(\pi / 3) i}}{2 e^{(\pi / 6) i}}=\frac{2 \sqrt{3}}{2} e^{\left(\frac{\pi}{3}-\frac{\pi}{6}\right) i}=\sqrt{3} e^{(\pi / 6) i}$ or $\frac{3}{2}+\frac{\sqrt{3}}{2} i$
44. [fast] With $z=2 \sqrt{3} e^{(\pi / 3) i}=\sqrt{3}+3 i$ and $w=2 e^{(\pi / 6) i}=\sqrt{3}+i$, compute $z-w$, giving your answer in either polar form or rectangular form (your choice).
$(\sqrt{3}+3 i)-(\sqrt{3}+i)=(\sqrt{3}-\sqrt{3})+(3 i-i)=2 i$ or $2 e^{(\pi / 2) i}$
45. Convert the following numbers to polar form, that is, \qquad $e^{\left(-{ }^{i}\right)}$ where the first blank is a positive number.
(a) $4 \cos \left(21^{\circ}\right)+4 \sin \left(21^{\circ}\right) i 4 e^{21^{\circ} i}$
(b) $9 \cos \left(-3^{\circ}\right)+9 \sin \left(-3^{\circ}\right) i 9 e^{-3^{\circ} i}$ or $9 e^{357^{\circ} i}$
(c) $\cos (\pi / 4)+\sin (\pi / 4) i e^{(\pi / 4) i}$
(d) $\sqrt{2} \cos (\pi / 4)+\sqrt{2} \sin (\pi / 4) i \sqrt{2} e^{(\pi / 4) i}$
(e) $1+i \sqrt{\sqrt{2} e^{(\pi / 4) i}}$ This is the same number as in (d).
(f) $4 i 4 e^{(\pi / 2) i}$
(k) $\overline{-5-5 i}=-5+5 i=5 \sqrt{2} e^{(3 \pi / 4) i}$
(g) $\frac{1}{2}+\frac{\sqrt{3}}{2} i e^{(\pi / 3) i}$
(ℓ) $\overline{6 e^{5 \pi / 6} 6 e^{-5 \pi / 6}}$
(h) $\frac{1}{2}-\frac{\sqrt{3}}{2} i e^{(-\pi / 3) i}$
or $e^{(5 \pi / 3) i}(\mathrm{~m})\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{10}=\left(e^{\frac{\pi}{4} i}\right)^{10}=e^{\frac{5 \pi}{2} i}=e^{\left(\frac{5 \pi}{2}-2 \pi\right) i}=e^{\frac{\pi}{2} i}$
(i) $1-\sqrt{3} i 2 e^{(-\pi / 3) i}$ or $2 e^{(5 \pi / 3) i}$
(j) $\sqrt{3}-3 i 2 \sqrt{3} e^{(-\pi / 3) i}$ or $2 \sqrt{3} e^{(5 \pi / 3) i}$
 shown below. $(x-(-2))(x-1)(x-4)=x^{3}+4 x^{2}+x-26$

47. Give the real polynomial of the form $x^{3}+$ \qquad $x^{2}+$ \qquad $x+$ \qquad whose roots include the two complex numbers shown below.

$$
(x-(-3+2 i))(x-(-3-2 i))(x-2)=x^{3}+4 x^{2}+x-26
$$

48. Which of the points A - E below could be $z \cdot w$? D^{Im}

49. [fast] Find the real root(s) of $x^{8}+x^{6}$ and the multiplicity of each root.

0 has multiplicity 6 .

50. [medium fast] Find the complex roots of $x^{8}+x^{6}$ and their multiplicities.

0 has multiplicity 6 . i has multiplicity $1 .-i$ has multiplicity 1 .
51. [slow] One of the roots of $2 x^{5}-5 x^{4}+10 x^{2}-10 x+3$ is 1 ; what is its multiplicity? $f(x)=(x-1)^{4}(2 x+3)$, so 1 has multiplicity 4
52. (a) $[$ medium fast $]$ Give the quotient when $x^{3}+2 x^{2}-7 x+1$ is divided by $x-2$. $x^{2}+4 x+1$
(b) [fast] Give the remainder when $x^{3}+2 x^{2}-7 x+1$ is divided by $x-2$. $R(x)=$ constant. $R(2)=f(2)=3$
(c) [slow] Give the remainder when $x^{3}+2 x^{2}-7 x+1$ is divided by $x^{2}-2$.
$-5 x+5$
53. [fast] The partial fraction decomposition of $\frac{x^{5}-23 x^{2}+15 x+81}{x^{2}-4 x+4}$ is

$$
\frac{x^{5}-23 x^{2}+15 x+81}{x^{2}-4 x+4}=\left(x^{3}+4 x^{2}+12 x+9\right)+\frac{3}{x-2}+\frac{51}{(x-2)^{2}} .
$$

Using this, give the quotient when $x^{5}-23 x^{2}+15 x+81$ is divided by $x^{2}-4 x+4$.
Multiplying both sides of the equation by $(x-2)^{2}$ gives

$$
x^{5}-23 x^{2}+15 x+81=\left(x^{3}+4 x^{2}+12 x+9\right)\left(x^{2}-4 x+4\right)+3(x-2)+51
$$

or

$$
x^{5}-23 x^{2}+15 x+81=\left(x^{3}+4 x^{2}+12 x+9\right)\left(x^{2}-4 x+4\right)+(3 x+45),
$$

so the remainder is $3 x+45$.
54. [slow] Write $\frac{x^{3}+4 x^{2}+x}{x^{2}+4 x-5}$ as the sum of a polynomial and some partial fractions.

$$
\begin{aligned}
x^{3}+4 x^{2}+x & =Q \cdot\left(x^{2}+4 x-5\right)+R \quad \leftarrow \text { quot. and rem. } \\
x^{3}+4 x^{2}+x & =(x)\left(x^{2}+4 x-5\right)+(6 x) \\
\frac{x^{3}+4 x^{2}+x}{x^{2}+4 x-5} & =x+\frac{6 x}{x^{2}+4 x-5}
\end{aligned}
$$

To split $\frac{6 x}{x^{2}+4 x-5}$ into partial fractions,

$$
\begin{aligned}
\frac{6 x}{x^{2}+4 x-5}=\frac{6 x}{(x-1)(x+5)} & =\frac{A}{x-1}+\frac{B}{x+5} \quad \text { for some } A, B \\
\frac{6 x(x-1)(x+5)}{(x-1)(x+5)} & =\frac{A(x-1)(x+5)}{x-1}+\frac{B(x-1)(x+5)}{x+5} \\
6 x & =A(x+5)+B(x-1) \\
6 x & =A x+5 A+B x-B \\
6 x+0 & =(A+B) x+(5 A-B), \text { so }\left\{\begin{array}{c}
A+B=6 \\
5 A-B=0
\end{array}\right.
\end{aligned}
$$

$A=1$ and $B=5$. Since we know $\frac{x^{3}+4 x^{2}+x}{x^{2}+4 x-5}=x+\frac{6 x}{x^{2}+4 x-5}$, we now have

$$
\frac{x^{3}+4 x^{2}+x}{x^{2}+4 x-5}=x+\frac{1}{x-1}+\frac{5}{x+5}
$$

55. [very slow] Give the partial fraction decomposition of $\frac{x^{6}+x^{3}+x^{2}+2}{x^{3}+x}$.

$$
\begin{aligned}
x^{6}+x^{3}+x^{2}+2 & =\left(x^{3}-x+1\right)\left(x^{3}+x\right)+\left(2 x^{2}-x+2\right) \\
\frac{x^{6}+x^{3}+x^{2}+2}{x^{3}+x} & =\left(x^{3}-x+1\right)+\frac{2 x^{2}-x+2}{x^{3}+x} \\
& =\left(x^{3}-x+1\right)+\frac{2 x^{2}-x+2}{x\left(x^{2}+1\right)} \\
& =\left(x^{3}-x+1\right)+\frac{A}{x}+\frac{B x+C}{x^{2}+1} \text { for some } A, B, C \\
& =\left(x^{3}-x+1\right)+\frac{2}{x}+\frac{-1}{x^{2}+1}
\end{aligned}
$$

