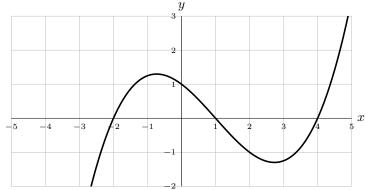
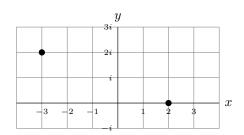
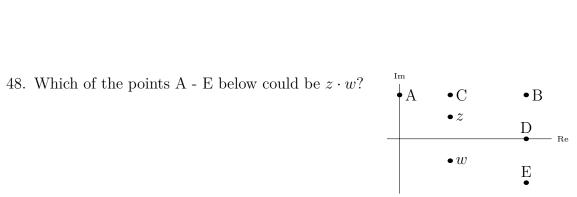
Extra practice: complex numbers and polynomials.


- 42. (a) Simplify $x^9 \cdot x^4$.
 - (b) Simplify $e^9 \cdot e^4$.
 - (c) Simplify $5e^{90} \cdot 7e^{40}$.
 - (d) Simplify $5e^{9i} \cdot 7e^{4i}$.
 - (e) Simplify $5e^{(\pi/6)i} \cdot 7e^{(\pi/2)i}$.
- 43. [fast] With $z = 2\sqrt{3}e^{(\pi/3)i} = \sqrt{3} + 3i$ and $w = 2e^{(\pi/6)i} = \sqrt{3} + i$, compute $\frac{z}{w}$, giving your answer in either polar form or rectangular form (your choice).
- 44. [fast] With $z = 2\sqrt{3}e^{(\pi/3)i} = \sqrt{3} + 3i$ and $w = 2e^{(\pi/6)i} = \sqrt{3} + i$, compute z w, giving your answer in either polar form or rectangular form (your choice).
- 45. Convert the following numbers to polar form, that is, $\underline{}e^{(\underline{}-i)}$ where the first blank is a positive number.
 - (a) $4\cos(21^\circ) + 4\sin(21^\circ)i$

- (b) $9\cos(-3^\circ) + 9\sin(-3^\circ)i$


- (c) $\cos(\pi/4) + \sin(\pi/4)i$
- (f) 4i (k) $\overline{-5-5i}$ (g) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ (l) $\overline{6e^{5\pi/6}}$ (h) $\frac{1}{2} \frac{\sqrt{3}}{2}i$ (m) $(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i)^{10}$
- (d) $\sqrt{2}\cos(\pi/4) + \sqrt{2}\sin(\pi/4)i$
- (i) $1 \sqrt{3}i$


(e) 1+i

- (j) $\sqrt{3} 3i$
- 46. Give the real polynomial of the form $\underline{} x^3 + \underline{} x^2 + \underline{} x + \underline{}$ whose graph is shown below.

47. Give the real polynomial of the form $x^3 + \underline{\hspace{1em}} x^2 + \underline{\hspace{1em}} x + \underline{\hspace{1em}}$ whose roots include the two complex numbers shown below.

- 49. [fast] Find the real root(s) of $x^8 + x^6$ and the multiplicity of each root.
- 50. [medium fast] Find the complex roots of $x^8 + x^6$ and their multiplicities.
- 51. [slow] One of the roots of $2x^5 5x^4 + 10x^2 10x + 3$ is 1; what is its multiplicity?
- 52. (a) [medium fast] Give the quotient when $x^3 + 2x^2 7x + 1$ is divided by x 2.
 - (b) [fast] Give the remainder when $x^3 + 2x^2 7x + 1$ is divided by x 2.
 - (c) [slow] Give the remainder when $x^3 + 2x^2 7x + 1$ is divided by $x^2 2$.
- 53. [fast] The partial fraction decomposition of $\frac{x^5-23x^2+15x+81}{x^2-4x+4}$ is

$$\frac{x^5 - 23x^2 + 15x + 81}{x^2 - 4x + 4} = (x^3 + 4x^2 + 12x + 9) + \frac{3}{x - 2} + \frac{51}{(x - 2)^2}.$$

Using this, give the quotient when $x^5 - 23x^2 + 15x + 81$ is divided by $x^2 - 4x + 4$.

- 54. [slow] Write $\frac{x^3 + 4x^2 + x}{x^2 + 4x 5}$ as the sum of a polynomial and some partial fractions.
- 55. [very slow] Give the partial fraction decomposition of $\frac{x^6 + x^3 + x^2 + 2}{x^3 + x}$.