Linear Algebra, Winter 2021 List 5 Vectors

- 56. For each expression below, does it represent a scalar, a vector, or nonsense? (By "nonsense" we mean it is not a legal operation; for example, $\vec{v} + 5$ is nonsense.)
 - (a) $\vec{a} + \vec{b}$ (i) $\vec{c} + s\vec{b}$ (p) $\vec{w} \cdot \langle s, t \rangle$ (j) $t(\vec{a} + \vec{b}) - \vec{c}$ (q) $|\vec{u}|$ (b) $\vec{u} \cdot \vec{v}$ (r) $|\langle 9, 2, \frac{1}{2} \rangle|$ (c) $\vec{a}\vec{b}$ (k) $(\vec{a} \cdot \vec{b})\vec{c}$ (1) $\vec{0} - \vec{a}$ (m) $\vec{0} \cdot \vec{w}$ (n) $\begin{bmatrix} 4\\2 \end{bmatrix} \cdot \begin{bmatrix} 1\\8 \end{bmatrix}$ (s) $|\vec{w}|\vec{v}$ (t) $|\vec{a}| + (\vec{b} \cdot \vec{v})$ (u) $|\vec{a}|(\vec{b} \cdot \vec{c})$ (v) $(\vec{a})^2$ (s) $|\vec{w}|\vec{v}$ (d) $t\vec{a}$ (t) $|\vec{a}| + (\vec{b} \cdot \vec{c})$ (e) $t + \vec{v}$ (f) $(t+s)\vec{u}$ (g) \vec{n}/s (w) $|\vec{a}|^2$ (o) $\langle 4, 2 \rangle \cdot \langle s, t \rangle$ (h) $\vec{a} - s$

In 2D, the zero vector is $\vec{0} = \langle 0, 0 \rangle$, and the standard basis vectors are $\vec{i} = \langle 1, 0 \rangle$ and $\vec{j} = \langle 0, 1 \rangle$. In 3D, the zero vector is $\vec{0} = \langle 0, 0, 0 \rangle$, and the standard basis vectors are $\vec{i} = \langle 1, 0, 0 \rangle$ and $\vec{j} = \langle 0, 1, 0 \rangle$ and $\vec{k} = \langle 0, 0, 1 \rangle$. In any dimension, the magnitude (or length) of a vector is $|\langle v_1, ..., v_n \rangle| = \sqrt{(v_1)^2 + (v_2)^2 + \dots + (v_n)^2}$, the scalar multiplication of \vec{v} by s is $s \langle v_1, ..., v_n \rangle = \langle sv_1, ..., sv_n \rangle$, and vector addition of \vec{u} and \vec{v} is $\langle u_1, ..., u_n \rangle + \langle v_1, ..., v_n \rangle = \langle u_1 + v_1, ..., u_n + v_n \rangle$.

- 57. Calculate each of the following:
 - (a) $\langle 3, 2 \rangle + \langle 7, 1 \rangle$ (b) $\begin{bmatrix} 3\\2 \end{bmatrix} - \begin{bmatrix} 7\\1 \end{bmatrix}$ (c) $\langle 3, 2 \rangle \cdot \langle 7, 1 \rangle$ (d) $8 \begin{bmatrix} 3\\2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 7\\1 \end{bmatrix}$ (e) $|\langle 3, 2 \rangle|$ (f) $\frac{1}{20} \langle 3, 2 \rangle$ (g) $\frac{\langle 3, 2 \rangle}{|\langle 3, 2 \rangle|}$ (h) $9 \langle 1, 0 \rangle + 2 \langle 0, 1 \rangle$ (i) $9\vec{\imath} + 2\vec{\jmath}$ (in 2D) (j) $6\vec{\imath} + \vec{\jmath} - 2\vec{k}$
- 58. Draw the following vectors as arrows all on the same plane (one drawing, not three drawings):
 - (a) the vector $2\vec{\imath} + \vec{\jmath}$ with its tail at (0, 0).
 - (b) the vector $2\vec{\imath} + \vec{\jmath}$ with its tail at (-3, 0).
 - (c) the vector $2\vec{\imath} + \vec{\jmath}$ with its tail at (-1, -1).

- 59. Draw the following vectors as arrows all on the same plane (one drawing, not four drawings):
 - (a) the vector $\langle 2, 1 \rangle$ with its tail at (0, 0).
 - (b) the vector $4\langle 2,1 \rangle$ with its tail at (0,0).
 - (c) the vector $1.5\langle 2,1\rangle$ with its tail at (0,0).
 - (d) the vector $(-1)\langle 2,1\rangle$ with its tail at (0,0).
- 60. Let P be the point (5,2) and let Q be the point (1,9). Describe the vector $\begin{bmatrix} 5\\2 \end{bmatrix} \begin{bmatrix} 1\\9 \end{bmatrix}$ in words, without doing any calculations.
- 61. Calculate each of the following. Each answer will be either a scalar *expression* or a vector *expression* involving t.
 - (a) $5\begin{bmatrix}3\\2\end{bmatrix} + t\begin{bmatrix}7\\1\end{bmatrix}$ (b) $t + \left|\begin{bmatrix}3\\2\end{bmatrix}\right|$ (c) $\left|t\langle3,2\rangle\right|$ (d) $\left|\langle1+t,1-t\rangle\right|^2$

62. A parallelogram has the vector $\vec{a} = \begin{bmatrix} 5\\2 \end{bmatrix}$ along one edge and $\vec{b} = \begin{bmatrix} 3\\8 \end{bmatrix}$ along another edge. Compute the lengths of the two diagonals of the parallelogram.

63. Which of the following are scalar multiples of $\langle 4, 2, -6 \rangle$?

(a)
$$\begin{bmatrix} 20\\10\\-60 \end{bmatrix}$$
(b) $\langle -12, -6, 18 \rangle$ (c) $\langle 0, 0, 0 \rangle$ (e)
$$\begin{bmatrix} \sqrt{32}\\\sqrt{8}\\-\sqrt{72} \end{bmatrix}$$
(f) $\langle 8, 4, -10 \rangle$

64. Find the unit vector in the same direction as $\vec{v} = \langle 8, -1, 4 \rangle$.

The **dot product** (also called **scalar product**) of \vec{u} and \vec{v} is written $\vec{u} \cdot \vec{v}$ and can be calculated as either

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

or

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\text{angle between } \vec{u} \text{ and } \vec{v}).$$

Two vectors are called **orthogonal** if their dot product is 0.

65. Give the two vectors that are orthogonal to $\vec{v} = \begin{bmatrix} 5\\12 \end{bmatrix}$ and have length 1.

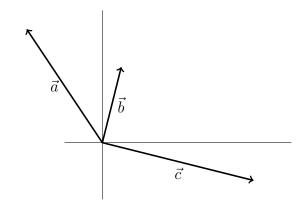
- 66. Give an example of a vector that is perpendicular to $\vec{v} = \begin{bmatrix} 1\\9\\4 \end{bmatrix}$.
- 67. Write $\begin{bmatrix} A \\ B \\ C \end{bmatrix} \cdot \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right)$ as an expression that does not use any vector notation.

68. Knowing that

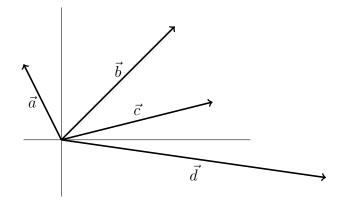
$$\cos(19.5^\circ) \approx \frac{33}{35}, \quad \cos(25.2^\circ) \approx \frac{19}{21}, \quad \cos(31^\circ) \approx \frac{6}{7}, \quad \cos(62.96^\circ) \approx \frac{15}{33}$$

find the acute angle between $\langle 6, 3, 6 \rangle$ and $\langle 6, 9, 18 \rangle$.

69. Let \vec{a} , \vec{b} , and \vec{c} be as in the image below. Which of $\vec{a} \cdot \vec{b}$, $\vec{a} \cdot \vec{c}$, and $\vec{b} \cdot \vec{c}$ is zero?



70. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be as in the image below.



- (a) Write two true equations of the form $_ + _ = _$ using these vectors.
- (b) Write two true equations of the form $_ _ = _$ using these vectors.