Linear Algebra, Winter 2021

List 5

Vectors

56. For each expression below, does it represent a scalar, a vector, or nonsense?
(By "nonsense" we mean it is not a legal operation; for example, $\vec{v}+5$ is nonsense.)
(a) $\vec{a}+\vec{b}$
(i) $\vec{c}+s \vec{b}$
(p) $\vec{w} \cdot\langle s, t\rangle$
(b) $\vec{u} \cdot \vec{v}$
(j) $t(\vec{a}+\vec{b})-\vec{c}$
(q) $|\vec{u}|$
(c) $\vec{a} \vec{b}$
(k) $(\vec{a} \cdot \vec{b}) \vec{c}$
(r) $\left|\left\langle 9,2, \frac{1}{2}\right\rangle\right|$
(d) $t \vec{a}$
(l) $\overrightarrow{0}-\vec{a}$
(s) $|\vec{w}| \vec{v}$
(e) $t+\vec{v}$
(m) $\overrightarrow{0} \cdot \vec{w}$
(t) $|\vec{a}|+(\vec{b} \cdot \vec{c})$
(f) $(t+s) \vec{u}$
(n) $\left[\begin{array}{l}4 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 8\end{array}\right]$
(u) $|\vec{a}|(\vec{b} \cdot \vec{c})$
(g) \vec{n} / s
(o) $\langle 4,2\rangle \cdot\langle s, t\rangle$
(v) $(\vec{a})^{2}$
(h) $\vec{a}-s$
(w) $|\vec{a}|^{2}$

In 2 D , the zero vector is $\overrightarrow{0}=\langle 0,0\rangle$, and the standard basis vectors are $\vec{\imath}=\langle 1,0\rangle$ and $\vec{\jmath}=\langle 0,1\rangle$.
In 3D, the zero vector is $\overrightarrow{0}=\langle 0,0,0\rangle$, and the standard basis vectors are $\vec{\imath}=\langle 1,0,0\rangle$ and $\vec{\jmath}=\langle 0,1,0\rangle$ and $\vec{k}=\langle 0,0,1\rangle$.

In any dimension, the magnitude (or length) of a vector is

$$
\left|\left\langle v_{1}, \ldots, v_{n}\right\rangle\right|=\sqrt{\left(v_{1}\right)^{2}+\left(v_{2}\right)^{2}+\cdots+\left(v_{n}\right)^{2}}
$$

the scalar multiplication of \vec{v} by s is

$$
s\left\langle v_{1}, \ldots, v_{n}\right\rangle=\left\langle s v_{1}, \ldots, s v_{n}\right\rangle
$$

and vector addition of \vec{u} and \vec{v} is

$$
\left\langle u_{1}, \ldots, u_{n}\right\rangle+\left\langle v_{1}, \ldots, v_{n}\right\rangle=\left\langle u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right\rangle
$$

57. Calculate each of the following:
(a) $\langle 3,2\rangle+\langle 7,1\rangle$
(d) $8\left[\begin{array}{l}3 \\ 2\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}7 \\ 1\end{array}\right]$
(g) $\frac{\langle 3,2\rangle}{|\langle 3,2\rangle|}$
(b) $\left[\begin{array}{l}3 \\ 2\end{array}\right]-\left[\begin{array}{l}7 \\ 1\end{array}\right]$
(e) $|\langle 3,2\rangle|$
(h) $9\langle 1,0\rangle+2\langle 0,1\rangle$
(i) $9 \vec{\imath}+2 \vec{\jmath}($ in 2 D$)$
(c) $\langle 3,2\rangle \cdot\langle 7,1\rangle$
(f) $\frac{1}{20}\langle 3,2\rangle$
(j) $6 \vec{\imath}+\vec{\jmath}-2 \vec{k}$
58. Draw the following vectors as arrows all on the same plane (one drawing, not three drawings):
(a) the vector $2 \vec{\imath}+\vec{\jmath}$ with its tail at $(0,0)$.
(b) the vector $2 \vec{\imath}+\vec{\jmath}$ with its tail at $(-3,0)$.
(c) the vector $2 \vec{\imath}+\vec{\jmath}$ with its tail at $(-1,-1)$.
59. Draw the following vectors as arrows all on the same plane (one drawing, not four drawings):
(a) the vector $\langle 2,1\rangle$ with its tail at $(0,0)$.
(b) the vector $4\langle 2,1\rangle$ with its tail at $(0,0)$.
(c) the vector $1.5\langle 2,1\rangle$ with its tail at $(0,0)$.
(d) the vector $(-1)\langle 2,1\rangle$ with its tail at $(0,0)$.
60. Let P be the point $(5,2)$ and let Q be the point $(1,9)$. Describe the vector $\left[\begin{array}{l}5 \\ 2\end{array}\right]-\left[\begin{array}{l}1 \\ 9\end{array}\right]$ in words, without doing any calculations.
61. Calculate each of the following. Each answer will be either a scalar expression or a vector expression involving t.
(a) $5\left[\begin{array}{l}3 \\ 2\end{array}\right]+t\left[\begin{array}{l}7 \\ 1\end{array}\right]$
(b) $t+\left|\left[\begin{array}{l}3 \\ 2\end{array}\right]\right|$
(c) $|t\langle 3,2\rangle|$
(d) $|\langle 1+t, 1-t\rangle|^{2}$
62. A parallelogram has the vector $\vec{a}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ along one edge and $\vec{b}=\left[\begin{array}{l}3 \\ 8\end{array}\right]$ along another edge. Compute the lengths of the two diagonals of the parallelogram.
63. Which of the following are scalar multiples of $\langle 4,2,-6\rangle$?
(a) $\left[\begin{array}{c}20 \\ 10 \\ -60\end{array}\right]$
(c) $\langle 0,0,0\rangle$
(e) $\left[\begin{array}{c}\sqrt{32} \\ \sqrt{8} \\ -\sqrt{72}\end{array}\right]$
(b) $\langle-12,-6,18\rangle$
(d) $\left[\begin{array}{c}0.4 \\ 0.2 \\ -0.6\end{array}\right]$
(f) $\langle 8,4,-10\rangle$
64. Find the unit vector in the same direction as $\vec{v}=\langle 8,-1,4\rangle$.

The dot product (also called scalar product) of \vec{u} and \vec{v} is written $\vec{u} \cdot \vec{v}$ and can be calculated as either

$$
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

or

$$
\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \text { (angle between } \vec{u} \text { and } \vec{v} \text {). }
$$

Two vectors are called orthogonal if their dot product is 0 .
65. Give the two vectors that are orthogonal to $\vec{v}=\left[\begin{array}{c}5 \\ 12\end{array}\right]$ and have length 1 .
66. Give an example of a vector that is perpendicular to $\vec{v}=\left[\begin{array}{l}1 \\ 9 \\ 4\end{array}\right]$.
67. Write $\left[\begin{array}{c}A \\ B \\ C\end{array}\right] \cdot\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]-\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)$ as an expression that does not use any vector notation.
68. Knowing that

$$
\cos \left(19.5^{\circ}\right) \approx \frac{33}{35}, \quad \cos \left(25.2^{\circ}\right) \approx \frac{19}{21}, \quad \cos \left(31^{\circ}\right) \approx \frac{6}{7}, \quad \cos \left(62.96^{\circ}\right) \approx \frac{15}{33},
$$

find the acute angle between $\langle 6,3,6\rangle$ and $\langle 6,9,18\rangle$.
69. Let \vec{a}, \vec{b}, and \vec{c} be as in the image below. Which of $\vec{a} \cdot \vec{b}, \vec{a} \cdot \vec{c}$, and $\vec{b} \cdot \vec{c}$ is zero?

70. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be as in the image below.

(a) Write two true equations of the form \qquad $+\ldots=$ \qquad using these vectors.
(b) Write two true equations of the form \qquad $-\quad$ _ $=$ \qquad using these vectors.

