List 6

Lines and planes, cross product
The vector \vec{r} is used for $\langle x, y\rangle$ in 2D and $\langle x, y, z\rangle$ in 3D.
The line through point \vec{p} parallel to vector \vec{d} has parametric vector equation

$$
\vec{r}=\vec{p}+t \vec{d} .
$$

The vector \vec{d} is called a direction vector for the line. This vector equation is a short way of writing the 2 or 3 parametric equations with only scalars.

The plane through point \vec{p} parallel to vectors \vec{u} and \vec{v} has parametric vector eqn.

$$
\vec{r}=\vec{p}+t \vec{u}+s \vec{v} .
$$

The plane through \vec{p} perpendicular to vector \vec{n} has vector equation

$$
\vec{n} \cdot(\vec{r}-\vec{p})=0 .
$$

The vector \vec{n} is called a normal vector for the plane. If $\vec{p}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\vec{n}=\langle a, b, c\rangle$, the vector equation above is equivalent to the "scalar equation"

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

or to

$$
a x+b y+c z=D
$$

for the number $D=\vec{p} \cdot \vec{n}$.
71. Write an equation in vector form for the line through points $(2,3)$ and $(-3,7)$. The vector from P_{1} to P_{2} is one possible direction vector for this line. That vector is

$$
\vec{v}=\vec{P}_{2}-\vec{P}_{1}=\langle-3,7\rangle-\langle 2,3\rangle=\langle-5,4\rangle .
$$

One equation for the line is $\vec{r}=\vec{P}_{1}+t \vec{v}$, which is

$$
\vec{r}=\langle 2,3\rangle+t\langle-5,4\rangle .
$$

72. Describe the line through the point (2, 2.4, 3.5) and parallel to the vector $3 \vec{\imath}+2 \vec{\jmath}-\vec{k}$ using the parameter t in
(a) one vector equation. $\vec{r}=\langle 2,2.4,3.5\rangle+t\langle 3,2,-1\rangle$
(b) three scalar equations. $x=2+3 t, \quad y=2.4+2 t, \quad z=3.5-t$
73. Does the point $(4,8,7)$ line on the line $\vec{r}=\langle 1,2,6\rangle+\langle 3,8,9\rangle t$?
74. Find a scalar equation for the plane through the origin perpendicular to the vector $\langle 1,-2,5\rangle$.
Since $\langle 1,-2,5\rangle \cdot\langle x, y, z\rangle=0$, this is $x-2 y+5=0$.
75. Find an equation for the plane through the point $(1,-1,-1)$ parallel to the plane $5 x-y-z=6$.
The first plane is normal to $\vec{n}=\langle 5,-1,-1\rangle$, so this one is too. One equation is

$$
\langle 5,-1,-1\rangle \cdot(\langle x, y, z\rangle-\langle 1,-1,-1\rangle)=0 .
$$

By expanding the dot product, we get the scalar equation

$$
5(x-1)+(-1)(y+1)+(-1)(z+1)=0
$$

which can be simplified to just $5 x-y-z=7$.
76. Find the distance from the point $(-6,3,5)$ to the plane $x-2 y-4 z=8$.

The closest point to $(-6,3,5)$ on the plane $x-2 y-4 z=8$ is on the line through $(-6,3,5)$ that is perpendicular to $x-2 y-4 z=8$. That line has direction vector $\vec{v}=\langle 1,-2,-4\rangle$, the same as the normal vector for the plane, so that line is

$$
\vec{r}=\langle-6,3,5\rangle+\langle 1,-2,-4\rangle t
$$

or

$$
\vec{r}=\langle-6+t, 3-2 t, 5-4 t\rangle .
$$

The intersection of this line with $x-2 y-4 z=8$ occurs when

$$
\begin{aligned}
(-6+t)-2(3-2 t)-4(5-4 t) & =8 \\
-32+21 t & =8 \\
t & =41 / 21
\end{aligned}
$$

which corresponds to the point

$$
\left\langle-6+\frac{41}{21}, 3-2 \frac{41}{21}, 5-4 \frac{41}{21}\right\rangle=\left\langle\frac{-86}{21}, \frac{-17}{21}, \frac{-55}{21}\right\rangle .
$$

The distance between $(-6,3,5)$ and $\left(\frac{-86}{21}, \frac{-17}{21}, \frac{-55}{21}\right)$ is

$$
\sqrt{\left(-6-\frac{-86}{21}\right)^{2}+\left(3-\frac{-17}{21}\right)^{2}+\left(5-\frac{-55}{21}\right)^{2}}=\frac{40}{\sqrt{21}} .
$$

77. Explain why the parametric equations

$$
\left\{\begin{array} { l }
{ x = 1 - t } \\
{ y = 2 - 3 t } \\
{ z = 4 t }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=2 s \\
y=-1+6 s \\
z=4-8 s
\end{array}\right.\right.
$$

describe the same line.
The direction vectors $\overrightarrow{v_{1}}=\langle-1,-3,4\rangle$ and $\overrightarrow{v_{2}}=\langle 2,6,-8\rangle$ are parallel, and the point $(0,-1,4)$ is on both lines (this point corresponds to $t=1$ for the first line and to $s=0$ for the second line).

You could use any point that is on both lines in this explanation; you do not have to use $(0,-1,4)$.
78. Find the intersection point of the line

$$
L: \quad x=t, y=1-2 t, z=-3+2 t
$$

and the plane

$$
P: \quad 3 x-y-2 z=3 .
$$

The value of t for this intersection point satisfies

$$
\begin{aligned}
3 x-y-2 z & =3 \\
3(t)-(1-2 t)-2(-3+2 t) & =3 \\
t+5 & =3 \\
t & =-2
\end{aligned}
$$

The coordinates of this point are therefore

$$
x=-2, \quad y=1-2(-2)=5, \quad z=-3+2(-2)=-7,
$$

so the point is $(-2,5,-7)$. (A previous file incorrectly wrote $(0,1,-3)$ as the final answer.)
79. Do the lines $\quad L_{1}: \quad x=3+t, y=2-2 t, z=1+5 t$

$$
L_{2}: \quad x=8-3 s, y=1+s, z=-10+5 s
$$

intersect? If so, find the intersection point and the angle between the two lines at that point (using a calculator for $\cos ^{-1}$).
The lines intersect at the point (13/5, 14/5, -1) (this corresponds to $t=-2 / 5$ for L_{1} and $s=9 / 5$ for L_{2}). The angle between the lines is the angle between the direction vectors $\vec{a}=\langle 1,-2,5\rangle$ and $\vec{b}=\langle-3,1,5\rangle$, which is

$$
\arccos \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)=\arccos \left(\frac{20}{5 \sqrt{42}}\right) \approx 0.9056 \approx 51.89^{\circ} .
$$

80. Do the lines

$$
\begin{array}{ll}
L_{1}: & x=3+t, y=2-2 t, z=1+5 t \\
L_{3}: & x=5+2 s, y=-6-s, z=7-4 s
\end{array}
$$

intersect? If so, find the intersection point and the angle between the two lines at that point (using a calculator for $\cos ^{-1}$).
No intersection
81. Give parametric equations (with two parameters) for the plane through the origin parallel to both $\langle 1,5,9\rangle$ and $\langle 2,-1,2\rangle$.

$$
\vec{r}=t\langle 1,5,9\rangle+s\langle 2,-1,2\rangle
$$

The cross product of $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is written $\vec{a} \times \vec{b}$ and can be calculated as

$$
\vec{a} \times \vec{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \vec{\imath}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \vec{\jmath}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \vec{k} .
$$

This vector is perpendicular to \vec{a} and to \vec{b}, has length $|\vec{a}||\vec{b}| \sin (\theta)$ where θ is the angle between \vec{a} and \vec{b}, and its direction obeys the Right-Hand Rule.
82. For each expression below, does it represent a scalar, a vector, or nonsense?
(a) $\vec{a} \times t$ nonsense
(h) $\left[\begin{array}{c}2 \\ -1 \\ 6\end{array}\right] \times \vec{w}$ vector
(m) $\|\vec{v} \times \vec{w}\|$ scalar
(b) $\vec{a} \times \vec{b}$ vector
(i) $\langle 1,3,8\rangle \times(\vec{a}+\vec{b}) \mathrm{v}$.
(n) $\overrightarrow{0} \times \overrightarrow{0}$ vector
(c) $(\vec{a} \times b) \times \vec{c}$ vector
(j) $\langle t, 4, s\rangle \times(\vec{a}-\vec{b}) \mathrm{v}$.
(o) $(\vec{u} \times \vec{v}) \cdot \vec{w}$ scalar
(d) $(\vec{u}+\vec{w}) \times \vec{v}$ vector
(k) $|\vec{v} \times \vec{w}|$ scalar
(p) $\vec{u} \times(\vec{v} \cdot \vec{w})$ non.
(e) $(\vec{u} \times \vec{w})+\vec{v}$ vector
(l) $5 \vec{a}+\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \times \vec{a}\right) \mathrm{v}$.
(q) $|\langle 7,4,2\rangle| \times \vec{v}$ non.
(f) $t(\vec{u} \times \vec{w})+s \vec{v}$ vector
(g) $a \vec{u} \times(b \vec{v}+c \vec{w})$ vector
(r) $\vec{a} \times \vec{b}+t$ nonsense
(s) $|\vec{v} \times \vec{w}|-|\vec{v} \cdot \vec{w}|$ scalar
83. For the vectors $\vec{v}=\langle 2,-1,3\rangle$ and $\vec{w}=\langle 4,2,1\rangle$,
(a) Give the vector $\vec{v} \times \vec{w} .\langle-7,10,8\rangle$
(b) Give the vector $\vec{w} \times \vec{v}$. $\langle 7,-10,-8\rangle$ Note that $\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}$.
(c) Give the scalar $\vec{v} \cdot(\vec{v} \times \vec{w}) .0$ You could calculate $2(-7)+(-1) 10+3(8)=0$, but in fact $\vec{v} \cdot(\vec{v} \times \vec{w})$ will be 0 for ANY vectors because $\vec{v} \times w$ is always perpendicular to \vec{v}.
(d) Give the scalar $\vec{w} \cdot(\vec{v} \times \vec{w})$. 0
84. Find parametric equations for the line through $(2,1,0)$ perpendicular to both $\vec{\imath}+\vec{\jmath}$ and $\vec{\jmath}+\vec{k}$.
This line is parallel to $(\vec{\imath}+\vec{\jmath}) \times(\vec{\jmath}+\vec{k})=\langle 1,-1,1\rangle$. As an alternative to using cross-product, you can find any 3 numbers a, b, c for which

$$
\begin{array}{ll}
\langle 1,1,0\rangle \cdot\langle a, b, c\rangle=0 & a+b=0 \\
\langle 0,1,1\rangle \cdot\langle a, b, c\rangle=0 & b+c=0
\end{array}
$$

and use $\vec{d}=\langle a, b, c\rangle$. (All these $\langle a, b, c\rangle$ will be scalar multiples of $\langle 1,-1,1\rangle$.) Parametric equations for the line through $(2,1,0)$ parallel to $\langle 1,-1,1\rangle$ are $x=2+t, \quad y=1-t, \quad z=t$.
85. Give a scalar equation (with no parameters) for the plane from \#81.

This plane is perpendicular to $\langle 1,5,9\rangle \times\langle 2,-1,2\rangle=\langle 19,16,-11\rangle$, so its equation is $19 x+16 y-11 z=0$.
86. If $\vec{a} \cdot \vec{b}=\sqrt{3}$ and $\vec{a} \times \vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$, find the angle between \vec{a} and \vec{b}.

The magnitude of $\langle 1,2,2\rangle$ is $\sqrt{1+4+4}=\sqrt{9}=3$. This gives two equations involving the angle θ between \vec{a} and \vec{b} :

$$
\begin{aligned}
|\vec{a} \times \vec{b}| & =|\vec{a}| \cdot|\vec{b}| \cdot \sin \theta=3 \\
\vec{a} \cdot \vec{b} & =|\vec{a}| \cdot|\vec{b}| \cdot \cos \theta=\sqrt{3}
\end{aligned}
$$

Dividing the first equation by the second gives $\frac{\sin \theta}{\cos \theta}=\frac{3}{\sqrt{3}}$, or $\tan \theta=\sqrt{3}$.
Thus $\theta=\tan ^{-1}(\sqrt{3})=\pi / 3$ or 60°.
87. If $|\vec{v}|=3,|\vec{w}|=5$, and $\vec{v} \cdot \vec{w}=10$, compute $(\vec{v}+\vec{w}) \cdot(\vec{v}+2 \vec{w})$.

Using the fact that $\vec{v} \cdot \vec{v}=|\vec{v}||\vec{v}| \cos (0)=|\vec{v}|^{2}$ and similarly $\vec{w} \cdot \vec{w}=|\vec{w}|^{2}$, we get that

$$
\begin{aligned}
(\vec{v}+\vec{w}) \cdot(\vec{v}+2 \vec{w}) & =(\vec{v}+\vec{w}) \cdot(\vec{v})+(\vec{v}+\vec{w}) \cdot(2 \vec{w}) \\
& =(\vec{v} \cdot \vec{v}+\vec{w} \cdot \vec{v})+2(\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{w}) \\
& =\left(|\vec{v}|^{2}+\vec{w} \cdot \vec{v}\right)+2\left(\vec{v} \cdot \vec{w}+|\vec{w}|^{2}\right) \\
& =|\vec{v}|^{2}+2|\vec{w}|^{2}+3(\vec{v} \cdot \vec{w}) \\
& =(3)^{2}+2(5)^{2}+3(10) \\
& =89
\end{aligned}
$$

88. Find parametric equations for the line that is the intersection of the two planes $x+y=3$ and $y+z=1$.

The point $(2,1,0)$ is on both planes, so it is part of their intersection. The line will be perpendicular to the normal vectors for each plane. That is, it will be perpendicular to $\langle 1,1,0\rangle$ and $\langle 0,1,1\rangle$.
"The line through ($2,1,0$) perpendicular to $\langle 1,1,0\rangle$ and $\langle 0,1,1\rangle$ " is exactly Problem \#84. Answer: $x=2+t, \quad y=1-t, \quad z=t$.

