Linear Algebra, Winter 2021 List 6 Lines and planes, cross product

The vector \vec{r} is used for $\langle x, y \rangle$ in 2D and $\langle x, y, z \rangle$ in 3D.

The line through point \vec{p} parallel to vector \vec{d} has parametric vector equation $\vec{r} = \vec{p} + t\vec{d}.$

The vector \vec{d} is called a **direction vector** for the line. This vector equation is a short way of writing the 2 or 3 parametric equations with only scalars.

The plane through point \vec{p} parallel to vectors \vec{u} and \vec{v} has parametric vector eqn. $\vec{r} = \vec{p} + t\vec{u} + s\vec{v}.$

The plane through \vec{p} perpendicular to vector \vec{n} has vector equation

$$\vec{n} \cdot (\vec{r} - \vec{p}) = 0.$$

The vector \vec{n} is called a **normal vector** for the plane. If $\vec{p} = \langle x_0, y_0, z_0 \rangle$ and $\vec{n} = \langle a, b, c \rangle$, the vector equation above is equivalent to the "scalar equation"

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

or to

$$ax + by + cz = D$$

for the number $D = \vec{p} \cdot \vec{n}$.

- 71. Write an equation in vector form for the line through points (2,3) and (-3,7).
- 72. Describe the line through the point (2, 2.4, 3.5) and parallel to the vector $3\vec{i}+2\vec{j}-\vec{k}$ using the parameter t in
 - (a) one vector equation.
 - (b) three scalar equations.
- 73. Does the point (4,8,7) line on the line $\vec{r} = \langle 1, 2, 6 \rangle + \langle 3, 8, 9 \rangle t$?
- 74. Find a scalar equation for the plane through the origin perpendicular to the vector $\langle 1, -2, 5 \rangle$.
- 75. Find an equation for the plane through the point (1, -1, -1) parallel to the plane 5x y z = 6.
- 76. Find the distance from the point (-6, 3, 5) to the plane x 2y 4z = 8.
- 77. Explain why the parametric equations

$$\begin{cases} x = 1 - t \\ y = 2 - 3t \\ z = 4t \end{cases} \text{ and } \begin{cases} x = 2s \\ y = -1 + 6s \\ z = 4 - 8s \end{cases}$$

describe the same line.

78. Find the intersection point of the line

$$L: \qquad x = t, \ y = 1 - 2t, \ z = -3 + 2t$$

and the plane

$$P: \qquad 3x - y - 2z = 3.$$

79. Do the lines $L_1: \quad x = 3 + t, \ y = 2 - 2t, \ z = 1 + 5t$ $L_2: \quad x = 8 - 3s, \ y = 1 + s, \ z = -10 + 5s$

intersect? If so, find the intersection point and the angle between the two lines at that point (using a calculator for \cos^{-1}).

80. Do the lines $L_1: \quad x = 3 + t, \ y = 2 - 2t, \ z = 1 + 5t$ $L_3: \quad x = 5 + 2s, \ y = -6 - s, \ z = 7 - 4s$

intersect? If so, find the intersection point and the angle between the two lines at that point (using a calculator for \cos^{-1}).

81. Give parametric equations (with two parameters) for the plane through the origin parallel to both $\langle 1, 5, 9 \rangle$ and $\langle 2, -1, 2 \rangle$.

The **cross product** of $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$ is written $\vec{a} \times \vec{b}$ and can be calculated as

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\vec{i} + (a_3b_1 - a_1b_3)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}.$$

This vector is perpendicular to \vec{a} and to \vec{b} , has length $|\vec{a}||\vec{b}|\sin(\theta)$ where θ is the angle between \vec{a} and \vec{b} , and its direction obeys the Right-Hand Rule.

82. For each expression below, does it represent a scalar, a vector, or nonsense?

(a)	$\vec{a} \times t$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} $	(m) $\left \left \vec{v}\times\vec{w}\right \right $
(b)	$\vec{a} \times \vec{b}$	$\begin{pmatrix} n \end{pmatrix} \begin{bmatrix} -1 \\ 6 \end{bmatrix} \times w$	(n) $\vec{0} \times \vec{0}$
(c)	$(\vec{a}\times b)\times \vec{c}$	(i) $\langle 1, 3, 8 \rangle \times (\vec{a} + \vec{b})$	(o) $(\vec{u} \times \vec{v}) \cdot \vec{w}$
(d)	$(\vec{u}+\vec{w})\times\vec{v}$	(j) $\langle t, 4, s \rangle \times (\vec{a} - \vec{b})$	(p) $\vec{u} \times (\vec{v} \cdot \vec{w})$
(e)	$(\vec{u}\times\vec{w})+\vec{v}$	(k) $\left \vec{v} \times \vec{w} \right $	(q) $\left \left<7,4,2\right>\right \times\vec{v}$
(f)	$t(\vec{u}\times\vec{w})+s\vec{v}$	(1) $5\vec{a} + \left(\begin{vmatrix} 1 \\ 2 \end{vmatrix} \times \vec{a} \right)$	(r) $\vec{a} \times \vec{b} + t$
(g)	$a\vec{u}\times(b\vec{v}+c\vec{w})$	$\begin{pmatrix} 1 \end{pmatrix} \delta u + \begin{pmatrix} 2 \\ 3 \end{bmatrix} \lambda u \end{pmatrix}$	(s) $\left \vec{v} \times \vec{w} \right - \left \vec{v} \cdot \vec{w} \right $

83. For the vectors $\vec{v} = \langle 2, -1, 3 \rangle$ and $\vec{w} = \langle 4, 2, 1 \rangle$,

- (a) Give the vector $\vec{v} \times \vec{w}$.
- (b) Give the vector $\vec{w} \times \vec{v}$.
- (c) Give the scalar $\vec{v} \cdot (\vec{v} \times \vec{w})$.
- (d) Give the scalar $\vec{w} \cdot (\vec{v} \times \vec{w})$.

- 84. Find parametric equations for the line through (2, 1, 0) perpendicular to both $\vec{i} + \vec{j}$ and $\vec{j} + \vec{k}$.
- 85. Give a scalar equation (with no parameters) for the plane from #81.
- 86. If $\vec{a} \cdot \vec{b} = \sqrt{3}$ and $\vec{a} \times \vec{b} = \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$, find the angle between \vec{a} and \vec{b} .
- 87. If $|\vec{v}| = 3$, $|\vec{w}| = 5$, and $\vec{v} \cdot \vec{w} = 10$, compute $(\vec{v} + \vec{w}) \cdot (\vec{v} + 2\vec{w})$.
- 88. Find parametric equations for the line that is the intersection of the two planes x + y = 3 and y + z = 1.