List 6

Lines and planes, cross product
The vector \vec{r} is used for $\langle x, y\rangle$ in 2D and $\langle x, y, z\rangle$ in 3D.
The line through point \vec{p} parallel to vector \vec{d} has parametric vector equation

$$
\vec{r}=\vec{p}+t \vec{d} .
$$

The vector \vec{d} is called a direction vector for the line. This vector equation is a short way of writing the 2 or 3 parametric equations with only scalars.

The plane through point \vec{p} parallel to vectors \vec{u} and \vec{v} has parametric vector eqn.

$$
\vec{r}=\vec{p}+t \vec{u}+s \vec{v} .
$$

The plane through \vec{p} perpendicular to vector \vec{n} has vector equation

$$
\vec{n} \cdot(\vec{r}-\vec{p})=0 .
$$

The vector \vec{n} is called a normal vector for the plane. If $\vec{p}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\vec{n}=\langle a, b, c\rangle$, the vector equation above is equivalent to the "scalar equation"

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

or to

$$
a x+b y+c z=D
$$

for the number $D=\vec{p} \cdot \vec{n}$.
71. Write an equation in vector form for the line through points $(2,3)$ and $(-3,7)$.
72. Describe the line through the point $(2,2.4,3.5)$ and parallel to the vector $3 \vec{\imath}+2 \vec{\jmath}-\vec{k}$ using the parameter t in
(a) one vector equation.
(b) three scalar equations.
73. Does the point $(4,8,7)$ line on the line $\vec{r}=\langle 1,2,6\rangle+\langle 3,8,9\rangle t$?
74. Find a scalar equation for the plane through the origin perpendicular to the vector $\langle 1,-2,5\rangle$.
75. Find an equation for the plane through the point $(1,-1,-1)$ parallel to the plane $5 x-y-z=6$.
76. Find the distance from the point $(-6,3,5)$ to the plane $x-2 y-4 z=8$.
77. Explain why the parametric equations

$$
\left\{\begin{array} { l }
{ x = 1 - t } \\
{ y = 2 - 3 t } \\
{ z = 4 t }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=2 s \\
y=-1+6 s \\
z=4-8 s
\end{array}\right.\right.
$$

describe the same line.
78. Find the intersection point of the line

$$
L: \quad x=t, y=1-2 t, z=-3+2 t
$$

and the plane

$$
P: \quad 3 x-y-2 z=3 .
$$

79. Do the lines $\quad L_{1}: \quad x=3+t, y=2-2 t, z=1+5 t$

$$
L_{2}: \quad x=8-3 s, y=1+s, z=-10+5 s
$$

intersect? If so, find the intersection point and the angle between the two lines at that point (using a calculator for $\cos ^{-1}$).
80. Do the lines $\quad L_{1}: \quad x=3+t, y=2-2 t, z=1+5 t$

$$
L_{3}: \quad x=5+2 s, y=-6-s, z=7-4 s
$$

intersect? If so, find the intersection point and the angle between the two lines at that point (using a calculator for $\cos ^{-1}$).
81. Give parametric equations (with two parameters) for the plane through the origin parallel to both $\langle 1,5,9\rangle$ and $\langle 2,-1,2\rangle$.

The cross product of $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is written $\vec{a} \times \vec{b}$ and can be calculated as

$$
\vec{a} \times \vec{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \vec{\imath}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \vec{\jmath}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \vec{k} .
$$

This vector is perpendicular to \vec{a} and to \vec{b}, has length $|\vec{a}||\vec{b}| \sin (\theta)$ where θ is the angle between \vec{a} and \vec{b}, and its direction obeys the Right-Hand Rule.
82. For each expression below, does it represent a scalar, a vector, or nonsense?
(a) $\vec{a} \times t$
(b) $\vec{a} \times \vec{b}$
(h) $\left[\begin{array}{c}2 \\ -1 \\ 6\end{array}\right] \times \vec{w}$
(m) $\|\vec{v} \times \vec{w}\|$
(n) $\overrightarrow{0} \times \overrightarrow{0}$
(c) $(\vec{a} \times b) \times \vec{c}$
(i) $\langle 1,3,8\rangle \times(\vec{a}+\vec{b})$
(o) $(\vec{u} \times \vec{v}) \cdot \vec{w}$
(d) $(\vec{u}+\vec{w}) \times \vec{v}$
(j) $\langle t, 4, s\rangle \times(\vec{a}-\vec{b})$
(p) $\vec{u} \times(\vec{v} \cdot \vec{w})$
(e) $(\vec{u} \times \vec{w})+\vec{v}$
(k) $|\vec{v} \times \vec{w}|$
(q) $|\langle 7,4,2\rangle| \times \vec{v}$
(f) $t(\vec{u} \times \vec{w})+s \vec{v}$
(g) $a \vec{u} \times(b \vec{v}+c \vec{w})$
(l) $5 \vec{a}+\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \times \vec{a}\right)$
(r) $\vec{a} \times \vec{b}+t$
(s) $|\vec{v} \times \vec{w}|-|\vec{v} \cdot \vec{w}|$
83. For the vectors $\vec{v}=\langle 2,-1,3\rangle$ and $\vec{w}=\langle 4,2,1\rangle$,
(a) Give the vector $\vec{v} \times \vec{w}$.
(b) Give the vector $\vec{w} \times \vec{v}$.
(c) Give the scalar $\vec{v} \cdot(\vec{v} \times \vec{w})$.
(d) Give the scalar $\vec{w} \cdot(\vec{v} \times \vec{w})$.
84. Find parametric equations for the line through $(2,1,0)$ perpendicular to both $\vec{\imath}+\vec{\jmath}$ and $\vec{\jmath}+\vec{k}$.
85. Give a scalar equation (with no parameters) for the plane from \#81.
86. If $\vec{a} \cdot \vec{b}=\sqrt{3}$ and $\vec{a} \times \vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$, find the angle between \vec{a} and \vec{b}.
87. If $|\vec{v}|=3,|\vec{w}|=5$, and $\vec{v} \cdot \vec{w}=10$, compute $(\vec{v}+\vec{w}) \cdot(\vec{v}+2 \vec{w})$.
88. Find parametric equations for the line that is the intersection of the two planes $x+y=3$ and $y+z=1$.

