Linear Algebra, Winter 2021

List 8

Determinant, inverse, systems of equations

101. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right], C=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], D=\left[\begin{array}{lll}0 & 5 & 2\end{array}\right]$, and $E=\left[\begin{array}{ll}1 & 0 \\ 0 & 2 \\ 3 & 1\end{array}\right]$.

Write all the products of two matrices from this list that exist (e.g., $A A$ exists, but $A C$ does not).

There are 9 valid products of this form:

$$
A A, A B, B A, B B, C D, D C, D E, E A, E B \text {. }
$$

102. If $\left[\begin{array}{ll}3 & 5 \\ 5 & 9\end{array}\right] M=\left[\begin{array}{ccc}8 & 25 & 12 \\ 14 & 45 & 22\end{array}\right]$, what are the dimensions of matrix M ? 2×3
103. Give the dimensions of the matrix $\left[\begin{array}{cc}2 & -8 \\ 1 & 5 \\ 0 & -7\end{array}\right]\left[\begin{array}{ccccc}9 & 0 & 0 & 11 & 4 \\ -2 & -8 & 6 & 1 & \frac{1}{2}\end{array}\right]\left[\begin{array}{c}5 \\ 4 \\ 0 \\ 1 \\ -9\end{array}\right]\left[\begin{array}{lll}\frac{2}{7} & -1 & \frac{4}{7}\end{array}\right]$.
(Do not compute the matrix product.)
Dimensions $(3 \times 2)(2 \times 5)(5 \times 1)(1 \times 3)$ leads to 3×3.
104. For each of the following equations, either give the dimensions of the matrix M or state that such a matrix does not exist.
(a) $M=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ 2×1
(b) $M=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$ doesn't exist
(c) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ doesn't exist
(d) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] 3 \times 2$
(e) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] 2 \times 1$
(f) $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right] M\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] 1 \times 3$
(g) $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] M\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ doesn't exist
105. Find the cosine of the angle between $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\left[\begin{array}{ll}4 & -5 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
106. (a) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{l}4 \\ 4\end{array}\right]$ parallel to $\left[\begin{array}{l}4 \\ 4\end{array}\right]$? Yes
(b) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 5\end{array}\right]$ parallel to $\left[\begin{array}{l}2 \\ 5\end{array}\right]$? No
(c) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 9\end{array}\right]$ parallel to $\left[\begin{array}{l}2 \\ 9\end{array}\right]$? No
(d) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{c}5 \\ -9\end{array}\right]$ parallel to $\left[\begin{array}{c}5 \\ -9\end{array}\right]$? Yes
(e) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{c}2 \\ -9\end{array}\right]$ parallel to $\left[\begin{array}{c}2 \\ -9\end{array}\right]$? No
(f) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{c}2 \\ -2\end{array}\right]$ parallel to $\left[\begin{array}{c}2 \\ -2\end{array}\right]$? No
107. Compute the determinants of the following matrices.
(a) $\operatorname{det}\left(\left[\begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right]\right)=13$
(b) $\operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)=\boxed{-2}$
(c) $\operatorname{det}\left(\left[\begin{array}{ll}3 & a \\ 2 & 5\end{array}\right]\right)=15-2 a$
(d) $\operatorname{det}\left(\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 9 \\ 5 & 6 & 8\end{array}\right]\right)=25$ (You may use a calculator for this.)
(e) $\operatorname{det}\left(\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\right)=(\cos \alpha)^{2}+(\sin \alpha)^{2}=1$
108. Determinants have several nice properties, such as $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$ and $\operatorname{det}(s A)=s^{n} A$ when A is an $n \times n$ matrix.
Suppose M is a 5×5 matrix with $\operatorname{det}(M)=2$.
(a) Compute $\operatorname{det}(2 M) \cdot 2^{5} \cdot 2=64$
(b) Compute $\operatorname{det}\left(-3 M^{2}\right) \cdot(-3)^{5} \cdot 2 \cdot 2=-972$
(c) Compute $\operatorname{det}\left(M^{-1}\right)$.
109. Which of the following matrices have an inverse?
(A) Matrix A, a 3×3 matrix with $\operatorname{det}(A)=3$.
(B) Matrix B, a 3×5 matrix where every number in the matrix is 1 .
(C) Matrix C, a 4×4 matrix where every number in the matrix is 0 .
(D) Matrix D, a 5×5 matrix with $\operatorname{det}(D)=-1$.
(E) Matrix E, a 7×7 matrix with $\operatorname{det}(E)=0$.

only A and D have an inverse

110. For what values of the parameter p are the following matrices invertible? Give a formula for the inverse of each matrix.
(a) $\left[\begin{array}{cc}1 & 2 \\ p & p^{3}\end{array}\right]$ If $p \neq 0, \sqrt{2},-\sqrt{2}$, inverse is $\frac{1}{p^{3}-2 p}\left[\begin{array}{cc}p^{3} & -2 \\ -p & 1\end{array}\right]$.
(b) $\left[\begin{array}{cc}\cos p & -\sin p \\ \sin p & \cos p\end{array}\right]$ Inverse is $\left[\begin{array}{cc}\cos p & \sin p \\ -\sin p & \cos p\end{array}\right]$.
(c) $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]-p I_{2 \times 2}$ If $p \neq 4,-1$, inverse is $\frac{1}{p^{2}-3 p-4}\left[\begin{array}{cc}2-p & -2 \\ -3 & 1-p\end{array}\right]$.
111. For $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$, we have $A^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}=\left[\begin{array}{cc}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$ and $B^{-1}=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]^{-1}=\left[\begin{array}{cc}-4 & 3 \\ 7 / 2 & -5 / 2\end{array}\right]$.
(a) Calculate $A B$.
(b) Calculate $(A B)^{-1}$, that is, the inverse of the matrix from part (a).
(c) Calculate $A^{-1} B^{-1}$.
(d) Calculate $B^{-1} A^{-1}$.
(e) Is $(A B)^{-1}=A^{-1} B^{-1}$ true? Is $(A B)^{-1}=B^{-1} A^{-1}$ true?
112. Solve the system of equations $\left\{\begin{array}{l}4 x+y=25 \\ x-6 y=25 .\end{array}\right.$. $x=7, y=-3$
113. Write the system of three equations that corresponds to the matrix equation

$$
\left[\begin{array}{ccc}
15 & -2 & 46 \\
0 & 14 & 15 \\
13 & 7 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
19 \\
-4
\end{array}\right] .
$$

Do not try to solve the system. (This was originally \#101.)

$$
\left\{\begin{aligned}
15 x-2 y+46 z & =0 \\
14 y+15 z & =19 \\
13 x+7 y-z & =-4
\end{aligned}\right.
$$

114. Given that

$$
\left[\begin{array}{ccc}
6 & 1 & 5 \\
0 & 2 & 9 \\
-1 & 4 & 18
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
0 & 2 & -1 \\
-9 & 113 & -54 \\
2 & -25 & 12
\end{array}\right],
$$

solve the following systems of equations without a calculator:
(a) $\left\{\begin{array}{rl}6 x+y+5 z & =-5 \\ 2 y+9 z & =0 \\ -x+4 y+18 z & =1 .\end{array} \quad(x, y, z)=\left[\begin{array}{ccc}0 & 2 & -1 \\ -9 & 113 & -54 \\ 2 & -25 & 12\end{array}\right]\left[\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right]=(-1,-9,2)\right.$
(b) $\left\{\begin{array}{rl}6 x+y+5 z & =1 \\ 2 y+9 z & =1 \\ -x+4 y+18 z & =7 .\end{array} \quad(x, y, z)=\left[\begin{array}{ccc}0 & 2 & -1 \\ -9 & 113 & -54 \\ 2 & -25 & 12\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 7\end{array}\right]=(-5,-274,61)\right.$
(c) $\left\{\begin{array}{rl}6 x+y+5 z & =-3 \\ 2 y+9 z & =-3 \\ -x+4 y+18 z & =9 .\end{array} \quad(x, y, z)=(-15,-798,177)\right.$
(d) $\left\{\begin{array}{rl}6 x+y+5 z & =1 \\ 2 y+9 z & =1 \\ -x+4 y+18 z & =-10 .\end{array} \quad(x, y, z)=(12,644,-143)\right.$
115. A collection of $1 \mathrm{zł}$ and $2 \mathrm{zł}$ coins totals 38 zt , and there are 20 coins all together. How many of each coin are there?
System: $\left\{\begin{aligned} 1 j+2 d & =38 \\ j+d & =20 .\end{aligned} \quad\right.$ Solution: $(j, d)=(2,18)$.
Two 1-zł-coins and twenty 2-zł-coints.
116. A band is selling tickets for a concert at two prices, normal and reduced. On Tuesday, they sell 31 normal tickets and 24 reduced tickets for a total of 2820 zł. On Wednesday, they sell 28 normal and 27 reduced for 2760 zf total. What are the prices for individual tickets?
System: $\left\{\begin{array}{l}31 n+24 r=2820 \\ 28 n+27 r=2760 .\end{array} \quad\right.$ Solution: $(n, r)=(60,40)$.
Normal tickets are $60 \mathrm{zł}$ and reduced tickets are $40 \mathrm{zł}$.
117. Sam has a secret two-digit number and gives the following clues: the sum of the digits is 9 , and if you reverse the digits you get a number that is 45 more than the original number. Find Sam's secret number.
A number written "ab" has the value $10 a+b$. Its reverse "ba" has value $10 b+a$.
System: $\left\{\begin{aligned} a+b & =9 \\ (10 b+a)-(10 a+b) & =45 .\end{aligned} \rightarrow\left\{\begin{array}{c}a+b=9 \\ -9 a+9 b=45 .\end{array}\right.\right.$
Solution: $(a, b)=(2,7)$, so the secret number is 27 .
118. A menu has the following options:

1 coffee 2 muffins 1 apple	2 coffees 5 muffins	2 coffees 2 muffins 2 apples
$24.00 \mathrm{zł}$	$47.25 \mathrm{zł}$	$37.50 \mathrm{zł}$

Assuming there are no deals/discounts, how much does each item cost?
System: $\left\{\begin{aligned} c+2 m+a & =24 \\ 2 c+5 m & =47.25 \\ 2 c+2 m+2 a & =37.50 .\end{aligned} \quad\right.$ Solution: $\begin{array}{rl}c & =3 \\ m & =10.5 \\ a & =5.25\end{array}$
A coffee costs $3.00 \mathrm{zł}$, a muffin costs $10.50 \mathrm{zł}$, and an apple costs $5.25 \mathrm{zł}$.

