List 9

Linear independence, rank, eigenvalues and eigenvectors
A collection of vectors is linearly dependent if one vector in the collection is a linear combination of the others (that is, a sum of scalar multiples of those vectors); otherwise it is linearly independent. A collection of one non-zero vector is always linearly independent.
120. (a) Is the collection $\{[-1,8,8]\}$ linearly independent? Yes
(b) Is the collection $\{[-1,8,8],[5,0,0]\}$ linearly independent? Yes
(c) Is the collection $\{[-1,8,8],[5,0,0],[3,1,3]\}$ linearly independent? Yes
(d) Is the collection $\{[-1,8,8],[5,0,0],[3,1,3],[3,-4,4]\}$ linearly independent? No
121. (a) Is the collection $\{[0,2,5]\}$ linearly independent? Yes
(b) Is the collection $\{[0,2,5],[1,1,-4]\}$ linearly independent? Yes
(c) Is the collection $\{[0,2,5],[1,1,-4],[2,4,-3]\}$ linearly independent? No
(d) Is the collection $\{[0,2,5],[1,1,-4],[2,4,-3],[2,8,7]\}$ linearly independent? No

The rank of a matrix is the maximum number of linearly independent rows in the matrix. This is also the maximum number of linearly independent columns.
122. Give the rank of the following matrices: (a) 1 , (b) 2 , (c) 3 , (d) 3
(a) $\left[\begin{array}{lll}-1 & 8 & 8\end{array}\right]$
(b) $\left[\begin{array}{ccc}-1 & 8 & 8 \\ 5 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ccc}-1 & 8 & 8 \\ 5 & 0 & 0 \\ 3 & 1 & 3\end{array}\right]$
(d) $\left[\begin{array}{ccc}-1 & 8 & 8 \\ 5 & 0 & 0 \\ 3 & 1 & 3 \\ 3 & -4 & 4\end{array}\right]$
123. Give the rank of the following matrices: (a) 1, (b) 2, (c) 2, (d) 2
(a) $\left[\begin{array}{lll}0 & 2 & 5\end{array}\right]$
(b) $\left[\begin{array}{ccc}0 & 2 & 5 \\ 1 & 1 & -4\end{array}\right]$
(c) $\left[\begin{array}{ccc}0 & 2 & 5 \\ 1 & 1 & -4 \\ 2 & 4 & -3\end{array}\right]$
(d) $\left[\begin{array}{ccc}0 & 2 & 5 \\ 1 & 1 & -4 \\ 2 & 4 & -3 \\ 2 & 8 & 7\end{array}\right]$
124. Calculate $\operatorname{rank}\left(\left[\begin{array}{ccc}4 & 0 & 0 \\ 1 & 5 & 5 \\ 6 & 3 & 2\end{array}\right]\right)$. The column $\left[\begin{array}{l}4 \\ 1 \\ 6\end{array}\right]$ cannot be a linear combination of the other two because they both have a 0 in the first entry.
The column $\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right]$ cannot be a linear com. of only $\left[\begin{array}{l}0 \\ 3 \\ 3\end{array}\right]$ because all multiples of $\left[\begin{array}{l}0 \\ 3 \\ 3\end{array}\right]$ have the same y - and z-component. Therefore all 3 columns are linearly independent, so the rank is 3 .
125. For which values of p does the matrix $\left[\begin{array}{lll}4 & 0 & 0 \\ 1 & 3 & 5 \\ 6 & 3 & p\end{array}\right]$ have rank 2? $p=5$ For which values does it have rank 3 ? all $p \neq 5$ Rank 1? None
126. Find $\operatorname{rank}(A)$ and $\operatorname{det}(A)$ for the matrix $A=\left[\begin{array}{ccc}4 & 8 & 1 \\ 7 & 14 & 6 \\ 1 & 2 & 7\end{array}\right]$ without a calculator. $\operatorname{rank}(A)=2$ because the second column is two times the first column. $\operatorname{det}(A)=0$ because the rank is less than the number of columns.
127. The rank of $\left[\begin{array}{ccc}4 & 1 & 5 \\ 2 & 0 & 2 \\ 1 & -1 & 0\end{array}\right]$ is 2 and the rank of $\left[\begin{array}{cccc}4 & 1 & 5 & 1 \\ 2 & 0 & 2 & 2 \\ 1 & -1 & 0 & 7\end{array}\right]$ is 3 . How many solutions does the system $\left\{\begin{aligned} 4 x+y+5 z & =1 \\ 2 x+2 z & =2 \\ x-y & =7\end{aligned}\right.$ have? None
128. The rank of $\left[\begin{array}{ccc}4 & 1 & 5 \\ 2 & 0 & 2 \\ 1 & -1 & 0\end{array}\right]$ is 2 and the rank of $\left[\begin{array}{ccc}4 & 1 & 5 \\ 2 & 6 \\ 2 & 0 & 2 \\ 1 & -1 & 0\end{array}\right]$ is also 2.

How many solutions does the system $\left\{\begin{aligned} & 4 x+y+5 z=6 \\ & 2 x+ 2 z \\ &=4 \\ & x-y=4\end{aligned}\right.$ have? Infinitely many
129. The rank of $\left[\begin{array}{ccc}7 & 2 & 5 \\ 9 & 0 & 3 \\ 3 & -1 & 0\end{array}\right]$ is 3 and the rank of $\left[\begin{array}{cccc}7 & 2 & 5 & -1 \\ 9 & 0 & 3 & 0 \\ 3 & -1 & 0 & 5\end{array}\right]$ is also 3 .

How many solutions does the system $\left\{\begin{aligned} 7 x+2 y+5 z & =-1 \\ 9 x+3 z & =0 \\ 3 x-y & =5\end{aligned}\right.$ have? One
130. If the numbers a, b, c, d are such that $(x, y)=(9,1)$ is a solution to $\left\{\begin{array}{l}a x+b y=2 \\ c x+d y=3\end{array}\right.$ but the system $\left\{\begin{array}{l}a x+b y=4 \\ c x+d y=9\end{array}\right.$ has no solutions, what is the rank of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$? Call this number r. Since the system $\left\{\begin{array}{l}a x+b y=4 \\ c x+d y=9\end{array}\right.$ has no solutions, $r<2$. The values $9,1,2,3$ are not important- the fact that $\left\{\begin{array}{l}a x+b y=2 \\ c x+d y=3\end{array}\right.$ simply means that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is not $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and thus $r>0$. The only integer $0<r<2$ is $r=1$.

Let M be a square matrix. If $M \vec{v}=\lambda \vec{v}$ with $\vec{v} \neq \overrightarrow{0}$ then the vector \vec{v} is called an eigenvector of M and the number s is called an eigenvalue of M.

- The eigenvalues of M are exactly the numbers λ for which $\operatorname{det}(A-\lambda I)=0$.
- The determinant of M is exactly equal to the product of all its eigenvalues.

131. Find the eigenvalues of $\left[\begin{array}{cc}4 & 1 \\ -2 & 8\end{array}\right]$.
$\operatorname{det}\left(\left[\begin{array}{cc}4-\lambda & 1 \\ -2 & 8-\lambda\end{array}\right]\right)=(4-\lambda)(8-\lambda)-(1)(-2)=\lambda^{2}-12 \lambda+34$.
The roots of $\lambda^{2}-12 \lambda+34$ are $6+\sqrt{2}$ and $6-\sqrt{2}$.
132. Find the eigenvalues of $\left[\begin{array}{ll}2 & 1 \\ 7 & 8\end{array}\right]$, then find the eigenvector for each eigenvalue. $\operatorname{det}\left(\left[\begin{array}{cc}2-\lambda & 1 \\ 7 & 8-\lambda\end{array}\right]\right)=0$ gives $\lambda^{2}-10 \lambda+9=0$, so the eigenvalues are 9 and 1 . For $\lambda=9$, we want $\left[\begin{array}{ll}2 & 1 \\ 7 & 8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=9\left[\begin{array}{l}x \\ y\end{array}\right]$, so $\left[\begin{array}{c}2 x+y \\ 7 x+8 y\end{array}\right]=\left[\begin{array}{l}9 x \\ 9 y\end{array}\right]$. The solutions to $\left\{\begin{array}{c}2 x+y=9 x \\ 7 x+8 y=9 y\end{array}\right.$ are any multiple of $\left[\begin{array}{l}1 \\ 7\end{array}\right]$. For $\lambda=1$ we get any multiple of $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
133. Find the complex eigenvalues of $\left[\begin{array}{cc}4 & 1 \\ -8 & 8\end{array}\right]$.
$\operatorname{det}\left(\left[\begin{array}{cc}4-\lambda & 1 \\ -8 & 8-\lambda\end{array}\right]\right)=(4-\lambda)(8-\lambda)-(1)(-8)=\lambda^{2}-12 \lambda+40$.
The roots of $\lambda^{2}-12 \lambda+40$ are $6+2 i$ and $6-2 i$.
134. Give the determinant and rank of a 3×3 matrix whose eigenvalues are
(a) $6,-2$, and 1. Determinant $=$ product of eigenvalues. $(6)(-2)(1)=-12$. Rank 3 .
(b) 4,3 , and 0 . det $=(4)(3)(0)=0$, rank $=2$ because 4 and 3 are not zero.
(c) $1-4 i, 1+4 i$, and 2 . det $=(1-4 i)(1+4 i)(2)=34$, rank $=3$ because all three are not zero.
135. If a 4×4 matrix of real numbers has $1-2 i$ and $3+i$ as two of its eigenvalues, find its determinant.
$\operatorname{det}\left(A-\lambda I_{4 \times 4}\right)$ will be a polynomial with real coefficients, so for each of its roots $a+b i$ the complex conjugate $a-b i$ will also be a root. Thus $1+2 i$ and $3-i$ are also eigenvalues of the matrix. $\quad(1-2 i)(1+2 i)(3+i)(3-i)=(5)(10)=50$
136. If the matrix M satisfies

$$
M\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-6 \\
6
\end{array}\right] \quad \text { and } \quad M\left[\begin{array}{l}
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
12 \\
6
\end{array}\right] \quad \text { and } \quad M\left[\begin{array}{l}
7 \\
2
\end{array}\right]=\left[\begin{array}{c}
21 \\
6
\end{array}\right]
$$

find the eigenvalues of M.
The middle equation is irrelevant because $[12,6]$ is not parallel to $[5,1]$. The other two equations show that -6 and 3 are eigenvalues because

$$
\left[\begin{array}{c}
-6 \\
6
\end{array}\right]=(-6)\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
21 \\
6
\end{array}\right]=3\left[\begin{array}{l}
7 \\
2
\end{array}\right] .
$$

137. If a 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ of real numbers satisfies

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{c}
5 \\
1+2 i
\end{array}\right]=\left[\begin{array}{c}
20+10 i \\
10 i
\end{array}\right],
$$

find the (complex) eigenvalues of the matrix and find its determinant. Eigenvalues $4 \pm 2 i$ have product $\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=(4+2 i)(4-2 i)=20$.

