

Instructor: Adam Abrams

Section 17 CRN (Course Registration Number) 45656 Tuesday/Thursday/Friday 3:30 - 4:45 pm

Mach 01124 Reasoning with Functions

Thursday, September 5

Section 18 CRN (Course Registration Number) 45703 Monday/Wednesday/Thursday 9:30 - 10:45 am

We will use Canvas later, but for now course materials are at theadamabrams.com/01124

Grades come from six quizzes (one dropped), one final exam, and participation. Total possible $15 \times 5 + 20 + 5 = 100$. For each quiz, 2 points can be earned from homework (still max 15/15).

Office of Accessibility: sites.rowan.edu/accessibilityservices/

Calculators: allowed, but not required

- Rational numbers are all the numbers that can be written as one
- Real numbers are all the values on a number line. Examples:

Types of humbers Natural numbers: 0, 1, 2, 3, 4, ... (in some books, only 1, 2, 3, 4, ...)

integer divided by another integer. Examples: $\frac{1}{2}$, $\frac{-2}{3}$, 1.5, $\frac{8}{1} = 8$, 0, $\frac{-5}{4}$

We will not use the + symbol often. This would more likely be written as

1/2 4 2 3/4 = 6 = 3

1. Expand

2. Expand
$$(4t - s) - (\frac{2}{3}t + 6s)$$
.

3. Using the distributive property (a(b + c) = ab + ac), expand

 $(4t-s)+(\frac{2}{3}t+6s),$

(that is, write it in a format that does not use parentheses) and then simplify.

 $(4t-s)(\frac{2}{3}t+6s).$

 $\circ a^n \cdot a^m = a^{n+m}$

$$(a^n)^m = a^{nm}$$

• $(a \cdot b)^n = a^n \cdot b^n \leftarrow$ "distributive property for powers over x"

Task: Simplify $5(-2a^{3}b^{-1})(\frac{b}{a})^{2}$.

Question: What is the value of $9^{1/2} \times 9^{1/2}$?

- For some, we can simplify or re-write them a little bit but will still have to use $\sqrt{\text{somewhere.}}$

Important property: if a, b > 0 then $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$.

[•] For "perfect squares", the square root is a natural number: $\sqrt{36} = 6$. • For some, there is no simpler way to write them: $\sqrt{5}$ is just $\sqrt{5}$.

0 use √ somewhere.

Important property: if a, b > 0 then $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$.

Example: $\sqrt{20} = ?$

For some, we can simplify or re-write them a little bit but will still have to

Usually, *sums* of square roots can't be simplified. • $\sqrt{2} \cdot \sqrt{3}$ is also $\sqrt{6}$. • $\sqrt{2} + \sqrt{3}$ is... just $\sqrt{2} + \sqrt{3}$.

However, you can simplify if the same square root appears multiple times. • Example 1: Simplify $\sqrt{2} - 8\sqrt{2}$.

Example 2: Simplify $5\sqrt{12} + 2\sqrt{3}$.

We have seen that $x^{1/2} = \sqrt{x}$. In general, $x^{1/n} = \sqrt[n]{x}$, which is the number for which $(?)^n = x$.

We also know $(x^a)^b = x^{ab}$, so we can combine these ideas to get

 $x^{m/n} = \sqrt[n]{x^m}.$

A polynomial formula with the variable x looks like $x^n + x^{n-1} + \cdots + x^2 + x + x + x$

where $n \ge 0$ is an integer, and the faces are numbers (or variables) that we call **coefficients**.

- Each $\bigcirc x^k$ is called a **term** of the polynomial.
- The term that does not include x at all is the **constant term**. 0
- The term with the highest power of x is called the **leading term**. 0
 - The exponent in the leading term is the degree of the polynomial. 0

ROUMOMIALS